精英家教网 > 初中数学 > 题目详情

已知:如图,在△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.

1.求证:BC=CD;

2.求证:∠ADE=∠ABD;

3.设AD=2,AE=1,求⊙O直径的长.

 

 

1.∵∠ABC=90°,

∴OB⊥BC.······························································· 1分

∵OB是⊙O的半径,

∴CB为⊙O的切线.·················································· 2分

又∵CD切⊙O于点D,

∴BC=CD;  

2.∵BE是⊙O的直径,

∴∠BDE=90°.

∴∠ADE+∠CDB =90°.······································ 4分

又∵∠ABC=90°,

∴∠ABD+∠CBD=90°.··········································································· 5分

由(1)得BC=CD,∴∠CDB =∠CBD.

∴∠ADE=∠ABD;         6分

3.由(2)得,∠ADE=∠ABD,∠A=∠A.

∴△ADE∽△ABD.··················································································· 7分

.·························································································· 8分

,∴BE=3,············································································ 9分

∴所求⊙O的直径长为3.        10分

 解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案