已知:如图,在△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.
1.求证:BC=CD;
2.求证:∠ADE=∠ABD;
3.设AD=2,AE=1,求⊙O直径的长.
1.∵∠ABC=90°,
∴OB⊥BC.······························································· 1分
∵OB是⊙O的半径,
∴CB为⊙O的切线.·················································· 2分
又∵CD切⊙O于点D,
∴BC=CD;
2.∵BE是⊙O的直径,
∴∠BDE=90°.
∴∠ADE+∠CDB =90°.······································ 4分
又∵∠ABC=90°,
∴∠ABD+∠CBD=90°.··········································································· 5分
由(1)得BC=CD,∴∠CDB =∠CBD.
∴∠ADE=∠ABD; 6分
3.由(2)得,∠ADE=∠ABD,∠A=∠A.
∴△ADE∽△ABD.··················································································· 7分
∴=.·························································································· 8分
∴=,∴BE=3,············································································ 9分
∴所求⊙O的直径长为3. 10分
解析:略
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com