精英家教网 > 初中数学 > 题目详情
7.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为18.

分析 作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.

解答 解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;
∵∠BAD=∠BCD=90°
∴四边形AMCN为矩形,∠MAN=90°;
∵∠BAD=90°,
∴∠BAM=∠DAN;
在△ABM与△ADN中,
$\left\{\begin{array}{l}{∠BAM=∠DAN}\\{∠AMB=∠AND}\\{AB=AD}\end{array}\right.$,
∴△ABM≌△ADN(AAS),
∴AM=AN(设为λ);△ABM与△ADN的面积相等;
∴四边形ABCD的面积=正方形AMCN的面积;
由勾股定理得:AC2=AM2+MC2,而AC=6;
∴2λ2=36,λ2=18,
故答案为:18.

点评 本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.已知点A(3,y1)、B(m,y2)是反比例函数y=$\frac{6}{x}$的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是2(答案不唯一).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.2017年3月27日是第22个全国中小学生安全教育日,某校为增强学生的安全意识,组织全校学生参加安全知识测试,并对测试成绩做了详细统计,将测试成绩(成绩都是整数,试卷满分30分)绘制成了如下“频数分布直方图”,请回答:
(1)参加全校安全知识测试的学生共有1200人;
(2)小亮向根据此直方图绘制一个扇形统计图,请你帮他算出分数为15.5~20.5这一组所对应的扇形的圆心角的度数;
(3)若学生测试分数通过20分记为优良,请计算出本次测试全校的优良率约是多少?(精确到1%)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=$\frac{1}{3}$CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为(  )
A.6B.4C.7D.12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.
如果小王和小张按上述规则各转动转盘一次,则
(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?
(2)该游戏是否公平?请用列表或画树状图的方法说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,反比例函数y=$\frac{k}{x}$的图象与一次函数y=$\frac{1}{4}$x的图象交于点A,B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.
(1)求k的值;
(2)设直线PA,PB与x轴分别交于点M,N,求证:△PMN是等腰三角形;
(3)设点Q是反比例函数图象上位于P,B之间的动点(与点P,B不重合),连接AQ,BQ,比较∠PAQ与∠PBQ的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,直线y=x+1与x,y轴交于点A,B,直线y=-2x+4与x、y轴交于点D,C,这两条直线交于点E.
(1)求E点坐标;
(2)若P为直线CD上一点,当△ADP的面积为9时,求P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,矩形ABCD的顶点A、D在坐标轴上,其坐标分别为(2,0),(0,4),对角线AC⊥x轴.
(1)求直线DC对应的函数解析式
(2)若反比例函数y=$\frac{k}{x}$(k>0)的图象经过DC的中点M,请判断这个反比例函数的图象是否经过点B,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,从数轴的原点O向右数出3个单位,记为点A,过点A作数轴的垂线并截取AB为1个单位长度,连接OB,以点O为圆心,以OB为半径画弧,交数轴的正半轴于点C,则点C所表示的实数为$\sqrt{10}$.

查看答案和解析>>

同步练习册答案