精英家教网 > 初中数学 > 题目详情
2.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度数.
请将求∠GDB度数的过程填写完整.
解:因为EF⊥BC,AD⊥BC,
所以∠BFE=90°,∠BDA=90°,理由是垂直的定义,
即∠BFE=∠BDA,所以EF∥AD,理由是同位角相等,两直线平行,
所以∠2=∠3,理由是两直线平行,同位角相等.
因为∠1=∠2,所以∠1=∠3,
所以AB∥DG,理由是内错角相等,两直线平行,
所以∠B+∠GDB=180°,理由是两直线平行,同旁内角互补.
又因为∠B=30°,所以∠GDB=150°.

分析 先根据垂直的定义得出∠BFE=90°,∠BDA=90°,故可得出EF∥AD,再由平行线的性质得出∠2=∠3,利用等量代换得出∠1=∠3,故AB∥DG,再由∠B=30°即可得出结论.

解答 解:∵EF⊥BC,AD⊥BC,
∴∠BFE=90°,∠BDA=90°(垂直的定义),即∠BFE=∠BDA,
∴EF∥AD(同位角相等,两直线平行),
∴∠2=∠3(两直线平行,同位角相等).
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥DG(内错角相等,两直线平行)
∴∠B+∠GDB=180°(两直线平行,同旁内角互补).
又∵∠B=30°,
∴∠GDB=150°.
故答案为:垂直的定义,AD,同位角相等,两直线平行,∠3,两直线平行,同位角相等,DG,内错角相等,两直线平行,∠GDB,两直线平行,同旁内角互补,150°.

点评 本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.求下列各式的值.
(1)$\sqrt{{{(-4)}^2}}$-$\root{{{\;}^3}}{-8}$+$\sqrt{1\frac{9}{16}}$;
(2)(-3)2-$\sqrt{{{10}^{-2}}}$+$\root{{{\;}^3}}{27}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知m是系数,关于x、y的两个多项式mx2-2x+y与-3x2+2x+3y的差中不含二次项,则代数式m2+3m-1的值为-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为多少米?(结果精确到0.1.参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知数轴上有A,B,C三点,分别代表-30,-10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.
(1)甲,乙在数轴上的哪个点相遇?
(2)多少秒后,甲到A,B,C的距离和为48个单位?
(3)在甲到A、B、C的距离和为48个单位时,若甲调头并保持速度不变,则甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.(1)计算:($\sqrt{5}$)2-$\root{3}{-8}$-|-3|+(-$\frac{1}{5}$)0
(2)已知:$\frac{1}{3}$(x+2)2-3=0,求x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为2,∠EAC=60°,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.若a<0,则下列结论不正确的是(  )
A.a2=(-a)2B.a3=(-a)3C.a2=|a|2D.a3=-|a|3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=135°,则∠4的度数为(  )
A.55°B.65°C.135°D.45°

查看答案和解析>>

同步练习册答案