3£®ÈçͼËùʾ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=ax2+bx+3£¨a¡Ù0£©¾­¹ýA£¨-3£¬0£©¡¢B£¨1£¬0£©Á½µã£¬ÓëyÖá½»ÓÚµãC£¬Æ䶥µãΪD£¬Á¬½ÓAD£¬µãPÊÂÏ߶ÎADÉÏÒ»¸ö¶¯µã£¨²»ÓëA¡¢DÖغϣ©£¬¹ýµãP×÷yÖáµÄ´¹ÏßPE£¬´¹×ãµãΪE£¬Á¬½ÓAE£®
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý½âÎöʽ£¬²¢Ð´³ö¶¥µãDµÄ×ø±ê£»
£¨2£©Èç¹ûPµãµÄ×ø±êΪ£¨x£¬y£©£¬¡÷PAEµÄÃæ»ýΪS£¬ÇóSÓëxÖ®¼äµÄº¯Êý¹Øϵʽ£¬Ö±½Óд³ö×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£¬²¢Çó³öSµÄ×î´óÖµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µ±SÈ¡µ½×î´óֵʱ£¬¹ýµãP×÷xÖáµÄ´¹ÏßPF£¬´¹×ãΪF£¬Á¬½ÓEF£¬°Ñ¡÷PEFÑØÖ±ÏßEFÕÛµþ£¬µãPµÄ¶ÔÓ¦µãΪµãP¡ä£¬Çó³öP¡äµÄ×ø±ê£¬²¢ÅжÏP¡äÊÇ·ñÔÚ¸ÃÅ×ÎïÏßÉÏ£®

·ÖÎö £¨1£©½«µãAºÍµãBµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽµÃµ½¹ØÓÚa¡¢bµÄ·½³Ì×飬ȻºóÇóµÃa¡¢bµÄÖµ¿ÉµÃµ½Å×ÎïÏߵĽâÎöʽ£¬È»ºóÀûÓÃÅä·½·¨¿ÉÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÏÈÇóµÃÖ±ÏßADµÄ½âÎöʽ£¬È»ºó¿ÉµÃµ½P£¨x£¬2x+6£©£®½ÓÏÂÀ´ÒÀ¾ÝS=$\frac{1}{2}$PE•yP¿ÉµÃµ½SÓëxµÄº¯Êý¹Øϵʽ£¬È»ºóÀûÓöþ´Îº¯ÊýµÄÐÔÖÊ¿ÉÇóµÃSµÄ×î´óÖµÒÔ¼°´ËʱxµÄÖµ£»
£¨3£©ÉèP¡äFÓëyÖá½»ÓëµãN£¬¹ýµãP¡ä×÷P¡äM¡ÍyÖáÓëµãM£®ÓÉ£¨2£©¿ÉÖªx=-$\frac{3}{2}$£¬¹Ê´Ë¿ÉÇóµÃµãPºÍµãEµÄ×ø±ê£¬È»ºóÀûÓ÷­ÕÛµÄÐÔÖʵõ½¡ÏPFE=¡ÏP¡äFE£¬PF=P¡äF=3£¬PE=P¡äE=$\frac{3}{2}$£¬½ÓÏÂÀ´£¬ÀûÓ÷­ÕÛµÄÐÔÖʺÍƽÐÐÏßµÄÐÔÖÊ¿ÉÖ¤Ã÷¡ÏPFE=¡ÏFEN£¬´Ó¶ø¿ÉµÃµ½EN=FN£¬È»ºóÉèEN=m£¬ÔòFN=m£¬P¡äN=3-m£¬ÒÀ¾Ý¹´¹É¶¨Àí¿ÉÇóµÃmµÄÖµ£¬È»ºó¿ÉÇóµÃµãP¡äµÄ×ø±ê£¬×îºó½«µãP¡äµÄ×ø±ê´úÈëÅ×ÎïÏß½øÐÐÅжϼ´¿É£®

½â´ð ½â£º£¨1£©½«µãAºÍµãBµÄ×ø±ê´úÈëµÃ£º$\left\{\begin{array}{l}{9a-3b+3=0}\\{a+b+3=0}\end{array}\right.$£¬
½âµÃ£ºa=1£¬b=-2£®
¡àÅ×ÎïÏߵĽâÎöʽΪy=-x2-2x+3£®
¡ßy=-x2-2x+3=-£¨x+1£©2+4£¬
¡àÅ×ÎïÏߵĶ¥µã×ø±êΪDΪ£¨-1£¬4£©£®
£¨2£©ÉèADµÄ½âÎöʽΪy=kx+b£¬½«µãAºÍµãDµÄ×ø±ê´úÈëµÃ£º$\left\{\begin{array}{l}{-3k+b=0}\\{-k+b=4}\end{array}\right.$£¬
½âµÃ£ºk=2£¬b=6£®
¡ßPÔÚADÉÏ£¬
¡àP£¨x£¬2x+6£©£®
¡àS=$\frac{1}{2}$PE•yP=$\frac{1}{2}$£¨-x£©•£¨2x+6£©=-x2-3x£¨-3£¼x£¼-1£©£®
¡àµ±x=-$\frac{-3}{2¡Á£¨-1£©}$=-$\frac{3}{2}$ʱ£¬SÈ¡Öµ×î´óÖµ$\frac{9}{4}$£®
£¨3£©Èçͼ1Ëùʾ£ºÉèP¡äFÓëyÖá½»ÓëµãN£¬¹ýµãP¡ä×÷P¡äM¡ÍyÖáÓëµãM£®

¡ßµ±x=-$\frac{3}{2}$ʱ£¬SÈ¡Öµ×î´óÖµ£¬
¡àP£¨-$\frac{3}{2}$£¬3£©£®
ÓÉ·­ÕÛµÄÐÔÖÊ¿ÉÖª£º¡ÏPFE=¡ÏP¡äFE£¬PF=P¡äF=3£¬PE=P¡äE=$\frac{3}{2}$£®
¡ßPF¡ÎyÖᣮ
¡à¡ÏPFE=¡ÏFEN£®
¡àEN=FN£®
ÉèEN=m£¬ÔòFN=m£¬P¡äN=3-m£®
¡ßÔÚRt¡÷P¡äENÖУ¬P¡äN2+P¡äE2=EN2£¬
¡à£¨3-m£©2+£¨$\frac{3}{2}$£©2=m2£¬½âµÃ£ºm=$\frac{15}{8}$£®
¡ßS¡÷P¡äEN=$\frac{1}{2}$P¡äN•P¡äE=$\frac{1}{2}$EN•P¡äM£¬
¡àP¡äM=$\frac{9}{10}$£®
¡ßÔÚRt¡÷EMP¡äÖУ¬EM=$\sqrt{£¨\frac{3}{2}£©^{2}-£¨\frac{9}{10}£©^{2}}$=$\frac{6}{5}$£¬
¡àOM=EO-EM=$\frac{9}{5}$£®
¡àP¡ä£¨$\frac{9}{10}$£¬$\frac{9}{5}$£©£®
°Ñx=$\frac{9}{10}$´úÈëÅ×ÎïÏߵĽâÎöʽµÃ£ºy=$\frac{39}{100}$¡Ù$\frac{9}{5}$£¬
¡àµãP¡ä²»ÔÚ¸ÃÅ×ÎïÏßÉÏ£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ¡¢¹´¹É¶¨Àí¡¢·­ÕÛµÄÐÔÖÊ£¬ÇóµÃµãP¡äµÄ×ø±êÊǽâ´ð±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖª$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$£¬¶¼ÊÇ·½³Ìy=kx+bµÄ½â£¬ÔòkºÍbµÄÖµÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{k=1}\\{b=2}\end{array}\right.$B£®$\left\{\begin{array}{l}{k=0}\\{b=-1}\end{array}\right.$C£®$\left\{\begin{array}{l}{k=2}\\{b=-3}\end{array}\right.$D£®$\left\{\begin{array}{l}{k=1}\\{b=-2}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Íê³ÉÏÂÁÐÈÎÎñ£¬ÊʺÏÓóéÑùµ÷²éµÄÊÇ£¨¡¡¡¡£©
A£®Îª¶©¹ºÐ£·þ£¬Á˽âѧÉúÒ·þµÄ³ß´ç
B£®¶Ôº½Ìì·É»úÉϵÄÁ㲿¼þ½øÐмì²é
C£®¿¼²ìÒ»ÅúÅÚµ¯µÄɱÉ˰뾶
D£®ÓïÎÄÀÏʦ¼ì²éijѧÉúһƪ×÷ÎÄÖеĴí±ð×Ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®º¯Êýy=kxµÄͼÏó¾­¹ýµã£¨3£¬-6£©£¬Ôòk=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¼×¡¢ÒÒÁ½ÈËÀûÓò»Í¬µÄ½»Í¨¹¤¾ß£¬ÑØͬһ·Ïß´ÓAµØ³ö·¢Ç°ÍùBµØ£¬Á½ÈËÐÐÊ»µÄ·³Ìy£¨km£©Óë¼×³ö·¢µÄʱ¼äx£¨h£©Ö®¼äµÄº¯ÊýͼÏóÈçͼËùʾ£®¸ù¾ÝͼÏóµÃµ½ÈçϽáÂÛ£¬ÆäÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®¼×µÄËÙ¶ÈÊÇ60km/hB£®Òұȼ×Ôç1Сʱµ½´ï
C£®ÒÒ³ö·¢3Сʱ׷Éϼ×D£®ÒÒÔÚABµÄÖе㴦׷Éϼ×

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬Å×ÎïÏßy=a£¨x-1£©£¨x-4£©ÓëxÖáÏཻÓÚµãA¡¢B£¨µãAÔÚµãBµÄ×ó²à£©£¬ÓëxÖáÏཻÓÚµãC£¬µãDÔÚÏ߶ÎCBÉÏ£¨µãD²»ÓëB¡¢CÖغϣ©£¬¹ýµãD×÷CAµÄƽÐÐÏߣ¬ÓëÅ×ÎïÏßÏཻÓÚµãE£¬Ö±ÏßBCµÄ½âÎöʽΪy=kx+2£®
£¨1£©Å×ÎïÏߵĽâÎöʽΪy=$\frac{1}{2}$x2-$\frac{5}{2}$x+2£»
£¨2£©ÇóÏ߶ÎDEµÄ×î´óÖµ£»
£¨3£©µ±µãDΪBCµÄÖеãʱ£¬ÅжÏËıßÐÎCAEDµÄÐÎ×´£¬²¢¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ð¡ÀøͬѧÓÐÃæ¶î10Ôª¡¢20Ôª¡¢50ÔªºÍ100ÔªµÄÖ½±Ò¸÷Ò»ÕÅ£¬·Ö±ð×°Èë´óСÍâ¹ÛÍêÈ«ÑùµÄËĸöºì°üÖУ¬Ã¿¸öºì°üÀïÖ»×°ÈëÒ»ÕÅÖ½±Ò£¬ÈôСÀø´ÓÖÐËæ»ú³éÈ¡Á½¸öºì°ü£®
£¨1£©ÇëÓÃÊ÷״ͼ»òÕßÁбíµÄ·½·¨£¬ÇóСÀøÒ»´ÎËæ»ú³éÈ¡µÄÁ½¸öºì°üÖÐÖ½±ÒµÄ×ܶîΪ70ÔªµÄ¸ÅÂÊ£»
£¨2£©ÇóСÀøÒ»´ÎËæ»ú³éÈ¡µÄÁ½¸öºì°üÖÐÖ½±ÒµÄ×ܶîÄܹºÂòÒ»¼þ¼Û¸ñΪ120ÔªÎľߵĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬DÊÇб±ßABµÄÖе㣬Á¬½ÓCD£¬Èô¡ÏA=32¡ã£¬Ôò¡ÏDCBµÄ´óСΪ58¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬AB¡¢CDÏཻÓÚµãO£¬OC=4£¬OD=6£¬AC¡ÎBD£¬EFÊÇ¡÷ODBµÄÖÐλÏߣ¬ÇÒEF=4£¬ÔòACµÄ³¤Îª$\frac{16}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸