精英家教网 > 初中数学 > 题目详情

【题目】一辆货车从百货大楼出发负责送货,向东走了 5 千米到达小明家,继续向东走了 1.5 千米到达小红家,然后向西走了 9.5 千米到达小刚家,最后返回百货大楼.

(1)以百货大楼为原点,向东为正方向,1 个单位长度表示 1 千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点 A 表示,小红家用点 B 表示,小刚家用点 C 表示)

(2)小明家与小刚家相距多远?

(3)若货车每千米耗油 0.6 升,那么这辆货车此次送货共耗油多少升?

【答案】(1)如图所示见解析;(2)小明家与小刚家相距 8 千米;(3)这辆货车此次送货共耗油 11.4 升.

【解析】

(1)根据已知,以百货大楼为原点,以向东为正方向,用 1 个单位长度表示 1 千米一辆货车从百货大楼出发,向东走了 5 千米,到达小明家,继续向东走了 1 .5 千米到达小红家,然后西走了 9.5 千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知;

(2)用小明家的坐标减去与小刚家的坐标即可;

(3)这辆货车一共行走的路程,实际上就是 5+1.5+9.5+3=19(千米,货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.

(1)如图所示:

(2)小明家与小刚家相距:5﹣(﹣3)=8(千米);

答:小明家与小刚家相距 8 千米;

(3)这辆货车此次送货共耗油:(5+1.5+9.5+3)×0.6=11.4(升).

答:这辆货车此次送货共耗油 11.4 升.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.

1)四棱柱有   个面,   条棱,   个顶点;

2)六棱柱有   个面,   条棱,   个顶点;

3)由此猜想n棱柱有   个面,   条棱,   个顶点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.

(1)求证:BD=CE;
(2)若AB=2,AD=1,把△ADE绕点A旋转,
①当∠EAC=90°时,求PB的长;
②直接写出旋转过程中线段PB长的最小值与最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点C(0,-2),直线l:y=kx-2k无论k取何值,直线总过定点B,

(1)求定点B的坐标.

(2)如图1,若点D为直线BC上(点(-1,-3)除外)一动点,过点Dx轴的垂线交y= - 3于点E,点F在直线BC上,距离D点为个单位,D点横坐标为t,ΔDEF的面积为S,求St函数关系式.

(3)若直线BC关于x轴对称后再向上平移5个单位得到直线B1C1,如图2,点G(1,a)H(6,b)是直线B1C1上两点,点P(m,n)为第一象限内(G、H两点除外)的一点,,mn=6,直线PGPH为分别交y轴于点MN两点,问线段OM、ON有什么数量关系,请证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:

每台甲型收割机的租金

每台乙型收割机的租金

A地区

1800

1600

B地区

1600

1200

(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求yx间的函数关系式,并写出x的取值范围;

(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;

(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1 , 还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2017次操作后得到的折痕D2016E2016 , 到BC的距离记为h2017;若h1=1,则h2017的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题7)如图,在RtABCACB=90°,EAC上一点,且AE=BC,过点AADCA,垂足为A,且AD=AC,AB、DE交于点F.

(1)判断线段ABDE的数量关系和位置关系,并说明理由;

(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:( 2﹣6sin30°﹣( 0+ +| |

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,请探究:
(1)求证:△DFE是等腰直角三角形;
(2)四边形CEDF的面积是否发生变化?若不变化,请求出面积.

查看答案和解析>>

同步练习册答案