【题目】如图1,在△ABC中,OB、OC是∠ABC、∠ACB的角平分线;
(1)填写下面的表格.
∠A的度数 | 50° | 60° | 70° |
∠BOC的度数 |
(2)试猜想∠A与∠BOC之间存在一个怎样的数量关系,并证明你的猜想;
(3)如图2,△ABC的高BE、CD交于O点,试说明图中∠A与∠BOD的关系.
【答案】(1)表格见解析(2)∠BOC=90°+∠A(3)证明见解析
【解析】(1)
∠A的度数 | 50° | 60° | 70° |
∠BOC的度数 | 115° | 120° | 125° |
(2)猜想:∠BOC=90°+∠A.
理由:∵在△ABC中,OB、OC是∠ABC、∠ACB的角平分线;
∴∠OBC=∠ABC,∠OCB=∠ACB,
∵∠ABC+∠ACB=180°﹣∠A,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,
∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣∠A)=90°+∠A.
(3)证明:∵△ABC的高BE、CD交于O点,
∴∠BDC=∠BEA=90°,
∴∠ABE+∠BOD=90°,∠ABE+∠A=90°,
∴∠A=∠BOD.
科目:初中数学 来源: 题型:
【题目】已知水星的半径约为24 400 000米,用科学记数法表示为( )
A. 0.244 × l08米 B. 2.44×106米 C. 2.44×107米 D. 24.4×106米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据市统计局调查数据显示,我市目前常住人口约为4470000人,数据“4470000”用科学记数法可表示为( )
A. 4.47×106 B. 4.47×107 C. 0.447×107 D. 447×104
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0).动点P从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA运动,到点A停止;它们的运动速度均为每秒1个单位长度.
(1)求直线AB的函数关系式;
(2)若点A、B、O与平面内点E组成的图形是平行四边形,请直接写出点E的坐标;
(3)在运动过程中,当P、Q的距离为2时,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com