精英家教网 > 初中数学 > 题目详情

如图所示,弦OC,FE的延长线交于圆外一点P,割线PAB经过圆心O,请你结合现有图形,添加一个适当的条件:________,使∠1=∠2.

答案:略
解析:

CD=EF


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于点B,大圆的精英家教网弦BC⊥AB于点B,过点C作大圆的切线CD交AB的延长线于点D,连接OC交小圆于点E,连接BE、BO.
(1)求证:△AOB∽△BDC;
(2)设大圆的半径为x,CD的长为y:
①求y与x之间的函数关系式;
②当BE与小圆相切时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:022

如图所示,弦OC,FE的延长线交于圆外一点P,割线PAB经过圆心O,请你结合现有图形,添加一个适当的条件:________,使∠1=∠2.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年浙江杭州萧山回澜初中九年级12月阶段性测试数学试卷(解析版) 题型:解答题

小明和同桌小聪在课后做作业时,对课本中的一道作业题,进行了认真探索.

【作业题】如图1,一个半径为100m的圆形人工湖如图所示,弦AB是湖上的一座桥,测得圆周角∠C=45°,求桥AB的长.

小明和小聪经过交流,得到了如下的两种解决方法:

方法一:延长BO交⊙O与点E,连接AE,得 Rt△ABE,∠E=∠C,∴AB=

方法二:作AB的弦心距OH,连接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=

感悟:圆内接三角形的一边和这边的对锐角、圆的半径(或直径)这三者关系,可构成直角三角形,从而把一边和这边的对锐角﹑半径建立一个关系式.

(1)问题解决:受到(1)的启发,请你解下面命题:如图2,点A(3,0)、B(0,),C为直线AB上一点,过A、O、C的⊙E的半径为2.求线段OC的长.

(2)问题拓展:如图3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连结EF, 设⊙O半径为x, EF为y.①y关于x的函数关系式;②求线段EF长度的最小值.

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

小明和同桌小聪在课后做作业时,对课本中的一道作业题,进行了认真探索。

【作业题】如图1,一个半径为100m的圆形人工湖如图所示,弦AB是湖上的一座桥,测得圆周角∠C=45°,求桥AB的长。

小明和小聪经过交流,得到了如下的两种解决方法:

方法一:延长BO交⊙O与点E,连接AE,得 Rt△ABE,∠E=∠C,∴AB=100

方法二:作AB的弦心距OH,连接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=50

∴AB=100

感悟:圆内接三角形的一边和这边的对锐角、圆的半径(或直径)这三者关系,

可构成直角三角形,从而把一边和这边的对锐角﹑半径建立一个关系式。

(1)问题解决:受到(1)的启发,请你解下面命题:如图2,点A(3,0)、B(0,),C为直线AB上一点,过A、O、C的⊙E的半径为2. 求线段OC的长。

(2)问题拓展:如图3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连结EF, 设⊙O半径为x, EF为y.

①     y关于x的函数关系式;②求线段EF长度的最小值。

查看答案和解析>>

同步练习册答案