A. | S=y2+y1 | B. | S=y2+2y1 | C. | S=y2-y1 | D. | S=y2-2y1 |
分析 首先根据题意可求得:y1,y2的值,A与C的坐标,即可用x1与x2表示出AB,CD,BD的值,易得四边形ABCD是直角梯形,即可得S=$\frac{1}{2}$(AB+CD)•BD,然后代入其取值,整理变形,即可求得S与y1、y2的数量关系式.
解答 解:根据题意得:y1=ax12+bx1+c,y2=ax22+bx2+c,
点A的坐标为:(x1,2ax1+b),点C的坐标为:(x2,2ax2+b),
∴AB=2ax1+b,CD=2ax2+b,BD=x2-x1,
∵EB⊥BD,CD⊥BD,
∴AB∥CD,
∴四边形ABCD是直角梯形,
∴S=$\frac{1}{2}$(AB+CD)•BD=$\frac{1}{2}$(2ax1+b+2ax2+b)(x2-x1)=a(x2+x1)(x2-x1)+b(x2-x1)=(ax22+bx2)-(ax12+bx1)=(ax22+bx2+c)-(ax12+bx1+c)=y2-y1.
即S=y2-y1.
故选C.
点评 此题考查了二次函数与一次函数的综合应用问题.此题难度较大,解题的关键是抓住点与函数的关系,注意根据整式的运算法则将原整式变形,注意数形结合思想的应用.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | DM=DN | B. | ∠ABD+∠ACD=180° | ||
C. | AC+AN=AB | D. | BC2+4DE2=4BM2+4DM2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com