【题目】如图①,在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A,B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G.
(1)求证:AE=CG;
(2)若点E运动到线段BD上时(如图②),试猜想AE,CG的数量关系是否发生变化,请证明你的结论;
(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,直接写出答案BE=
【答案】(1)详见解析;(2)不变,AE=CG,详见解析;(3)CM
【解析】
(1)如图①,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出结论;
(2)如图②,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出结论;
(3)如图③,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠BCE=∠CAM,由ASA就可以得出△BCE≌△CAM,就可以得出结论.
(1)证明:∵AC=BC,
∴∠ABC=∠CAB.
∵∠ACB=90°,
∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.
∵BF⊥CE,
∴∠BFC=90°,
∴∠CBF+∠BCE=90°,
∴∠ACE=∠CBF.
∵CD⊥AB,∠ABC=∠A=45°,
∴∠BCD=∠ACD=45°,
∴∠A=∠BCD.
在△BCG和△CAE中,
∴△BCG≌△CAE(ASA),
∴AE=CG.
(2)解:不变,AE=CG
理由如下:
∵AC=BC,
∴∠ABC=∠A.
∵∠ACB=90°,
∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.
∵BF⊥CE,
∴∠BFC=90°,
∴∠CBF+∠BCE=90°,
∴∠ACE=∠CBF.
∵CD⊥AB,∠ABC=∠A=45°,
∴∠BCD=∠ACD=45°,
∴∠A=∠BCD.
在△BCG和△CAE中,
∴△BCG≌△CAE(ASA),
∴AE=CG.
(3)BE=CM,
理由如下:∵AC=BC,
∴∠ABC=∠CAB.
∵∠ACB=90°,
∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.
∵AH⊥CE,
∴∠AHC=90°,
∴∠HAC+∠ACE=90°,
∴∠BCE=∠HAC.
∵在RT△ABC中,CD⊥AB,AC=BC,
∴∠BCD=∠ACD=45°
∴∠ACD=∠ABC.
在△BCE和△CAM中
,
∴△BCE≌△CAM(ASA),
∴BE=CM,
故答案为:CM.
科目:初中数学 来源: 题型:
【题目】如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2018处,则点A2018与点A0间的距离是( )
A. 0 B. 2 C. D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A(a,0),C(0,c)且满足:(a+6)2+=0,长方形ABCO在坐标系中(如图),点O为坐标系的原点.
(1)求点B的坐标.
(2)如图1,若点M从点A出发,以2个单位/秒的速度向右运动(不超过点O),点N从原点O出发,以1个单位/秒的速度向下运动(不超过点C),设M、N两点同时出发,在它们运动的过程中,四边形MBNO的面积是否发生变化?若不变,求其值;若变化,求变化的范围.
(3)如图2,E为x轴负半轴上一点,且∠CBE=∠CEB,F是x轴正半轴上一动点,∠ECF的平分线CD交BE的延长线于点D,在点F运动的过程中,请探究∠CFE与∠D的数量关系,并说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.
(1)求证:四边形EGFH是菱形;
(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在8×8的网格中的每个小正方形边长都是1,线段交点称作格点.任意连接这些格点,可得到一些线段.按要求作图:
(1)请画出△ABC的高AD;
(2)请连接格点,用一条线段将图中△ABC分成面积相等的两部分;
(3)直接写出△ABC的面积是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【探究函数y=x+的图象与性质】
(1)函数y=x+的自变量x的取值范围是________;
(2)下列四个函数图象中,函数y=x+的图象大致是________;
(3)对于函数y=x+,求当x>0时,y的取值范围.请将下列的求解过程补充完整.
解:∵x>0,∴y=x+=()2+=+________.
∵≥0,∴y≥________.
【拓展运用】
(4)若函数y=,求y的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com