【题目】如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1: ,求大楼AB的高度是多少?(精确到0.1米,参考数据: ≈1.41, ≈1.73, ≈2.45)
【答案】39.4米.
【解析】试题分析:延长AB交DC于H,作EG⊥AB于G,则则GH=DE=15米,EG=DH,设BH=x米,则米,在Rt△BCH中,BC=12米,由勾股定理得出方程,解方程求出BH=6米, 米,得出的长度,证明是等腰直角三角形,得出(米),即可得出大楼的高度.
试题解析:延长AB交DC于H,作EG⊥AB于G,如图所示:
则GH=DE=15米,EG=DH,
∵梯坎坡度
∴
设BH=x米,则米,
在Rt△BCH中,BC=12米,
由勾股定理得:
解得:x=6,
∴BH=6米, 米,
∴BG=GHBH=156=9(米), (米),
∵
∴
∴△AEG是等腰直角三角形,
∴ (米),
∴ (米).
故大楼AB的高度大约是39.4米.
科目:初中数学 来源: 题型:
【题目】某综合实践活动园区的门票价为:成人票50元,学生票25元,满40人可以购买团体票,票价打9折(不足40人也可按40人计算),某班在2位老师的带领下到园区参加综合实践活动.
(1)如果学生人数为38人,买门票至少应付多少钱?
(2)如果学生人数为34人,买门票至少应付多少钱?
(3)若设学生人数为x人,你能用含x的代数式表示买门票至少应付多少钱吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两运动员在长为的直道(,为直道两端点)上进行匀速往返跑训练,两人同时分别从点,点起跑,甲从点起跑,到达点后,立即转身跑向点,到达点后,又立即转身跑向点…乙从点起跑,到达点后,立即转身跑向点,到达点后,又立即转身跑向点…若甲跑步的速度为,乙跑步的速度为,则起跑后内,两人相遇的次数为( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,是边上的动点,若在边,上分别有点,,使得,.
(1)设,求(用含的代数式表示)
(2)尺规作图:分别在边,上确定点,(与平行或重合),使得(请在图中作图,保留作图痕迹,不写作法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,等边△ABC的边长为4cm,动点D从点B出发,沿射线BC方向移动,以AD为边作等边△ADE.
(1)在点D运动的过程中,点E能否移动至直线AB上?若能,求出此时BD的长;若不能,请说明理由;
(2)如图2,在点D从点B开始移动至点C的过程中,以等边△ADE的边AD、DE为边作ADEF.
①ADEF的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由;
②若点M、N、P分别为AE、AD、DE上动点,直接写出MN+MP的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】认真阅读下面的材料,完成有关问题.
材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.
问题(1):点A、B、C在数轴上分别表示有理数﹣5、﹣1、3,那么A到B的距离是 ,
A到C的距离是 . (直接填最后结果).
问题(2):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为 (用含绝对值的式子表示).
问题(3):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是 ;
②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是 ;当x的值取在 的范围时,|x|+|x﹣2|的最小值是 .
问题(4):求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从两地同时出发,甲车匀速前往地,到达地立即以另一速度按原路匀速返回到地;乙车匀速前往地,设甲、乙两车距地的路程为(千米),甲车行驶的时间为(小时)与之间的函数图象如图所示:
(1)甲车从地开往地时的速度是_________;乙车从地开往地时的速度是______.
(2)图中点的坐标是(______,______);
(3)求甲车返回时与之间的函数关系式,并写出自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.
(1)如图①,当∠BOC=70°时,求∠DOE的度数;
(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化若变化,说明理由;若不变,求∠DOE的度数;
(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,判断∠DOE的大小是否发生变化若变化,说明理由;若不变,求∠DOE的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com