精英家教网 > 初中数学 > 题目详情
精英家教网如图,在Rt△ABC中,AB=AC,∠BAC=90°,D、E为BC上两点,∠DAE=45°,F为△ABC外一点,且FB⊥BC,FA⊥AE,则下列结论:①CE=BF;②BD2+CE2=DE2;③S△ADE=
1
4
AD•EF
;④CE2+BE2=2AE2,其中正确的是(  )
A、①②③④B、①②④
C、①③④D、②③
分析:根据等腰直角三角形的性质,判断出△AFB≌△AEC,即可得出CE=BF,根据勾股定理与等量代换可得②正确,根据在等腰三角形中,角平分线与中线为一条直线即可得出③,再根据勾股定理以及等量代换即可得出④.
解答:精英家教网解:①∵∠BAC=90°,FA⊥AE,∠DAE=45°,
∴∠CAE=90°-∠DAE-∠BAD=45°-∠BAD,
∠FAB=90°-∠DAE-∠BAD=45°-∠BAD,
∴∠FAB=∠EAC,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵FB⊥BC,
∴∠FAB=45°,
∴△AFB≌△AEC,
∴CE=BF,故①正确,
②:由①中证明△AFB≌△AEC,
∴AF=AE,
∵∠DAE=45°,FA⊥AE,
∴∠FAD=∠DAE=45°,
∴△AFD≌△AED,
连接FD,
∵FB=CE,
∴FB2+BD2=FD2=DE2,故②正确,
③:∵∠FAD=∠EAD=45°,AF=AE,
∴AD⊥EF,EF=2EG,
∴S△ADE=
1
2
•AD•EG=
1
2
•AD•
1
2
EF
=
1
4
• AD•EF

故③正确,
④:∵FB2+BE2=EF2,CE=BF,
∴CE2+BE2=EF2
在RT△AEF中,AF=AE,
AF2+AE2=EF2
∴EF2=2AE2
∴CE2+BE2=2AE2,故④正确.
故选A.
点评:本题考查了勾股定理、全等三角形的判定定理以及等腰直角直角三角形的性质,此题涉及的知识面比较广,解题时要注意仔细分析,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案