【题目】初三年级261位学生参加期末考试,某班35位学生的语文成绩、数学成绩与总成绩在全年级中排名情况如图1和图2所示,甲、乙、丙为该班三位学生.
从这次考试成绩看,①在甲、乙两人中,总成绩名次靠前的学生是______;
②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是______.
你选择的理由是____________.
【答案】甲 数学 丙这个点的位置比右边图中丙的位置高,所以语文名次更“大”,即在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学.
【解析】
(1)根据图1分析甲乙两人所在的位置的横坐标即可确定总成绩名次
(2)根据图2分析丙所在位置的横坐标,确定丙的总成绩年级名次是倒数第5,在图1中找出从右数第5个点即为丙的位置,观察图1和图2中丙的纵坐标即可得出答案
(1)由图1可知甲的位置在乙的左侧,所以在甲、乙两人中,总成绩名次靠前的学生是甲;
(2)由初三年级261位学生参加期末考试,某班35位学生的语文成绩,数学成绩与总成绩在全年级的排名情况图可知,两个图中,同一个人的总成绩是不会变的.从图2看,丙是从右往左数第5个点,即丙的总成绩在班里倒数第5.在图1中,找到倒数第5个点,它表示的就是丙,发现这个点的位置比右边图中丙的位置高,所以语文名次更“大”,即在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;
科目:初中数学 来源: 题型:
【题目】如图,在边长为的正方形四个角上,分别剪去大小相等的等腰直角三角形,当三角形的直角边由小变大时,阴影部分的面积也随之发生变化,它们的变化情况如下:
三角形的直角边长/ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
阴影部分的面积/ | 398 | 392 | 382 | 368 | 350 | 302 | 272 | 200 |
(1)在这个变化过程中,自变量、因变量各是什么?
(2)请将上述表格补充完整;
(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积是怎样变化的?
(4)设等腰直角三角形的直角边长为,图中阴影部分的面积为,写出与的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,y轴上有一点A(0,1),点B是x轴上一点,∠ABO=60°,抛物线y=﹣x2++3与x轴交于C、D两点(点C在点D的左侧).
(1)将点C向右平移个单位得到点E,过点E作直线l⊥x轴,点P为y轴上一动点,过点P作PQ⊥y轴交直线l于点Q,点K为抛物线上第一象限内的一个动点,当△ABK面积最大时,求KQ+QP+PE的最小值,及此时点P的坐标;
(2)在(1)的条件下,将线段PE绕点P逆时针旋转90°后得线段PE′,问:在第一象限内是否存在点S,使得△SPE'是有一个角为60°,且以线段PE′为斜边的直角三角形,若存在请直接写出所有满足条件的点S,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠ABC、∠ADC的平分线分別交CD、AB上点E、F.
(1)若∠ABC=∠ADC,求征:∠ADF=∠ABE;
(2)如图,若∠A与∠C互朴,试探究∠ADF与∠ABE之同的数量夫系,并说明理由;
(3)如图,在(2)的条件下,当DA⊥AB时,试探究BE与DF的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,在中,是高,是角平分线,当,,则____;
(2)若和的度数分别用字母和来表示(),你能找到与和之间的关系吗? ______.(请直接写出你发现的结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)阅读下面的材料并把解答过程补充完整.
问题:在关于,的二元一次方程组中,,,求的取值范围.
在关于,的二元一次方程组中,利用参数的代数式表示,,然后根据,列出关于参数的不等式组即可求得的取值范围.解:由,解得,又因为,,所以解得____________.
(2)请你按照上述方法,完成下列问题:
①已知,且,,求的取值范围;
②已知,在关于,的二元一次方程组中,,,请直接写出的取值范围(结果用含的式子表示)____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B,有人在直线AB上点C(靠点B一侧)竖直向上摆放若干个无盖的圆柱形桶.试图让网球落入桶内,已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).当竖直摆放圆柱形桶至少________个时,网球可以落入桶内.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.
(1)写出所有选购方案(利用树状图或列表方法表示);
(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?
(3)现知希望中学用10万元购买甲、乙两种品牌电脑共36台(价格如图所示),其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com