分析 (1)先求出B、C两点坐标,设二次函数的解析式为y=ax2+bx+c,将点A、B、C的坐标代入解析式,转化为解方程组即可.
(2)如图1,过点P作PN⊥x轴于点N,交BC于点M,过点C作CE⊥PN于E,根据S四边形PCDB=S△BCD+S△CPM+S△PMB=$\frac{1}{2}$BD•OC+$\frac{1}{2}$PM•CE+$\frac{1}{2}$PM•BN,
构建二次函数,即可解决问题.
(3)①求出直线AC的解析式与对称轴的交点即为点M.
②如图2中,由△CDQ是以CD为腰的等腰三角形,可得CQ1=DQ2=DQ3=CD,作CE⊥对称轴于E,可得EQ1=ED=2,推出DQ1=4,由此即可解决问题.
解答 解:(1)令x=0,可得y=2,令y=0,可得x=4,即点B(4,0),C(0,2);
设二次函数的解析式为y=ax2+bx+c,将点A、B、C的坐标代入解析式得,
$\left\{\begin{array}{l}{a-b+c=0}\\{16a+4b+c=0}\\{c=2}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=\frac{3}{2}}\\{c=2}\end{array}\right.$,
∴二次函数的关系式为y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2;
(2)如图1,过点P作PN⊥x轴于点N,交BC于点M,过点C作CE⊥PN于E,
设M(a,-$\frac{1}{2}$a+2),P(a,-$\frac{1}{2}$a2+$\frac{3}{2}$a+2),
∴PM=-$\frac{1}{2}$a2+$\frac{3}{2}$a+2-(-$\frac{1}{2}$a+2)=-$\frac{1}{2}$a2+2a(0≤x≤4).
∵y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2=-$\frac{1}{2}$(x-$\frac{3}{2}$)2+$\frac{25}{8}$,
∴点D的坐标为:($\frac{3}{2}$,0),
∵S四边形PCDB=S△BCD+S△CPM+S△PMB=$\frac{1}{2}$BD•OC+$\frac{1}{2}$PM•CE+$\frac{1}{2}$PM•BN,
=$\frac{5}{2}$+$\frac{1}{2}$a(-$\frac{1}{2}$a2+2a)+$\frac{1}{2}$(4-a)(-$\frac{1}{2}$a2+2a),
=-a2+4a+$\frac{5}{2}$(0≤x≤4).
=-(a-2)2+$\frac{13}{2}$,
∴a=2时,S四边形PCDB的面积最大=$\frac{13}{2}$,
∴-$\frac{1}{2}$a2+$\frac{3}{2}$a+2=-$\frac{1}{2}$×22+$\frac{3}{2}$×2+2=3,
∴点P坐标为:(2,3),
∴当点P运动到(2,3)时,四边形PCDB的面积最大,最大值为$\frac{13}{2}$;
(3)如图2中,
∵A(-1,0),C(0,2),
∴直线AC的解析式为y=2x+2,直线AC与对称轴的交点即为点M,此时|MA-MC|的值最大,
∴M($\frac{3}{2}$,5).
∵抛物线的对称轴是x=$\frac{3}{2}$,
∴OD=$\frac{3}{2}$,
∵C(0,2),
∴OC=2.在Rt△OCD中,由勾股定理,得CD=$\sqrt{O{C}^{2}+O{D}^{2}}$=$\frac{5}{2}$,
∵△CDN是以CD为腰的等腰三角形,
∴CN1=DN2=DN3=CD.
如图2所示,作CE⊥对称轴于E,
∴EN1=ED=2,
∴DN1=4.
∴N1($\frac{3}{2}$,4),N2($\frac{3}{2}$,$\frac{5}{2}$),N3($\frac{3}{2}$,-$\frac{5}{2}$).
点评 本题考查二次函数综合题、一次函数、最值问题、勾股定理、等腰三角形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com