精英家教网 > 初中数学 > 题目详情
若等腰三角形ABC中,AB=AC=10cm,BC=12cm,则BC边上的高线AD的长为(  )
A、12cmB、10cmC、8cmD、6cm
分析:根据等腰三角形三线合一的性质,先求出BD的长,再利用勾股定理即可求解.
解答:精英家教网解:如图,BD=
1
2
BC=6cm,
在Rt△ABD中,
AD=
AB2-BD2
=
102-62
=8cm,
即BC边上的高线AD的长为8cm.
故选C.
点评:本题主要考查了等腰三角形的三线合一定理,等腰三角形底边上的高线把等腰三角形分成两个全等的直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半径的圆交BC于D,DE⊥AC交AC于E.
(1)求证:DE是⊙O的切线;
(2)若⊙O与AC相切于F,AB=AC=5cm,sinA=
35
,求⊙O的半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;
精英家教网
(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=
3
4
x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是
3
2
.求点M的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春)感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)
拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.
应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若等腰三角形ABC中,AB=AC=10cm,BC=12cm,则BC边上的高线AD的长为


  1. A.
    12cm
  2. B.
    10cm
  3. C.
    8cm
  4. D.
    6cm

查看答案和解析>>

同步练习册答案