【题目】如图,在中,
,
,
,动点
从点
出发,沿
方向匀速运动,速度为
;同时,动点
从点
出发,沿
方向匀速运动,速度为
;当一个点停止运动,另一个点也停止运动.设点
,
运动的时间是
.过点
作
于点
,连接
,
.
(1)为何值时,
?
(2)设四边形的面积为
,试求出
与
之间的关系式;
(3)是否存在某一时刻,使得
若存在,求出
的值;若不存在,请说明理由;
(4)当为何值时,
?
【答案】(1)当t=时,DE⊥AC;(2)
;(3)当t=
时,
;(4)t=
时,
=
【解析】
(1)若DE⊥AC,则∠EDA=90°,易证△ADE∽△ABC,进而列出关于t的比例式,即可求解;
(2)由△CDF∽△CAB,得CF=,BF=8﹣
,进而用割补法得到
与
之间的关系式,进而即可得到答案;
(3)根据,列出关于t的方程,即可求解;
(4)过点E作EM⊥AC于点M,易证△AEM∽△ACB,从而得EM=,AM=
,进而得DM=
,根据当DM=ME时,
=
,列出关于t的方程,即可求解.
(1)∵∠B=,AB=6 cm,BC=8 cm,
∴AC=10cm,
若DE⊥AC,则∠EDA=90°,
∴∠EDA=∠B,
∵∠A=∠A,
∴△ADE∽△ABC,
∴,即
,
∴t=,
答:当t=时,DE⊥AC;
(2)∵DF⊥BC,
∴∠DFC=90°,
∴∠DFC =∠B,
∵∠C=∠C,
∴△CDF∽△CAB,
∴, 即
,
∴CF=,
∴BF=8﹣,
∴;
(3)若存在某一时刻t,使得,
根据题意得:,
解得:,
答:当t=时,
;
(4)过点E作EM⊥AC于点M,则△AEM∽△ACB
∴=
,
∴,
∴EM=,AM=
,
∴DM=10-2t-=
,
在Rt△DEM中,当DM=ME时,=
,
∴,解得:t=
即:当t=时,
=
.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0,a、b、c为常数)上部分点的横坐标x,纵坐标y的对应值如下表:
x | …… | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | …… |
y | …… | 4 | 4 | m | 0 | …… |
则下列结论中:①抛物线的对称轴为直线x=﹣1;②m=;③当﹣4<x<2时,y<0;④方程ax2+bx+c﹣4=0的两根分别是x1=﹣2,x2=0,其中正确的个数有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请用学过的方法研究一类新函数(
为常数,
)的图象和性质.
(1)在给出的平面直角坐标系中画出函数的图象;
(2)对于函数,当自变量
的值增大时,函数值
怎样变化?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请用学过的方法研究一类新函数(
为常数,
)的图象和性质.
(1)在给出的平面直角坐标系中画出函数的图象;
(2)对于函数,当自变量
的值增大时,函数值
怎样变化?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N为DE中点,连接PM、PN、MN.
(1)试判断△PMN的形状,并证明你的结论;
(2)若CD=5,AC=12,求△PMN的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0),则下面的四个结论,其中正确的个数为( )
①2a+b=0②4a﹣2b+c<0③ac>0④当y>0时,﹣1<x<4
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为增强中学生体质,篮球运球已列为铜陵市体育中考选考项目,某校学生不仅练习运球,还练习了投篮,下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.
投篮次数(n) | 50 | 100 | 150 | 200 | 250 | 300 | 500 |
投中次数(m) | 28 | 60 | 78 | 104 | 124 | 153 | 252 |
(1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1)
(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com