精英家教网 > 初中数学 > 题目详情

【题目】春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.

租车公司:按日收取固定租金80元,另外再按租车时间计费.

共享汽车:无固定租金,直接以租车时间(时)计费.

如图是两种租车方式所需费用y1元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:

(1)分别求出y1、y2x的函数表达式;

(2)请你帮助小丽一家选择合算的租车方案.

【答案】(1)y1=kx+80,y2=30x;(2)见解析.

【解析】

(1)设y1=kx+80,将(2,110)代入求解即可;设y2=mx,将(5,150)代入求解即可;

(2)分y1=y2y1y2y1y2三种情况分析即可.

解:(1)由题意,设y1=kx+80,

将(2,110)代入,得110=2k+80,解得k=15,

y1x的函数表达式为y1=15x+80;

y2=mx,

将(5,150)代入,得150=5m,解得m=30,

y2x的函数表达式为y2=30x;

(2)由y1=y2得,15x+80=30x,解得x=

y1<y2得,15x+80<30x,解得x>

y1>y2得,15x+80>30x,解得x<

故当租车时间为小时时,两种选择一样;

当租车时间大于小时时,选择租车公司合算;

当租车时间小于小时时,选择共享汽车合算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,AB、AC是圆O的两条弦,AB=AC,过圆心O作OHAC于点H.

(1)如图1,求证:B=C;

(2)如图2,当H、O、B三点在一条直线上时,求BAC的度数;

(3)如图3,在(2)的条件下,点E为劣弧BC上一点,CE=6,CH=7,连接BC、OE交于点D,求BE的长和的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,BAC=75°.

(1)求B、C两点的距离;

(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?

(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,,60千米/小时≈16.7米/秒)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程(m-1)x2-(m-2)x+m=0.

(1)当m取何值时方程有一个实数根?

(2)当m取何值时方程有两个实数根?

(3)设方程的两根分别为x1、x2,且x1x2=m+1,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=-x2+bx+c与直线y=-x的交点A、B的横坐标分别为2.点P是直线上方抛物线上的一动点,过点PPD⊥AB于点D,作PE⊥x轴交AB于点E.

(1)直接写出点A、B的坐标;

(2)求抛物线的关系式;

(3)判断△OBC形状,并说明理由;

(4)设点P的横坐标为n,线段PD的长为y,求y关于n的函数关系式;

(5)定义符号min{a,b)}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.如min{2,0}=0,min{-3,4}=-3.直接写出min{-x2+bx+c,-x}的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出

(1)如图①,在矩形ABCD中,AB=2AD,ECD的中点,则∠AEB   ACB(填“>”“<”“=”);

问题探究

(2)如图②,在正方形ABCD中,PCD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;

问题解决

(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D是∠AOB的平分线OC上任意一点,过DDEOBE,以DE为半径作⊙D

①判断⊙DOA的位置关系, 并证明你的结论。

②通过上述证明,你还能得出哪些等量关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为AB两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.

1)求A社区居民人口至少有多少万人?

2)街道工作人员调查AB两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%B社区的知晓人数第一个月增长了m%,第二月在第一个月的基础上又增长了2m%,两个月后,街道居民的知晓率达到92%,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点,过点做直线平行于轴,点关于直线对称点为

1)求点的坐标;

2)点在直线上,且位于轴的上方,将沿直线翻折得到,若点恰好落在直线上,求点的坐标和直线的解析式;

3)设点在直线上,点在直线上,当为等边三角形时,求点的坐标.

查看答案和解析>>

同步练习册答案