精英家教网 > 初中数学 > 题目详情

圆的切线的性质定理是________.

圆的切线垂直于过切点的直径
分析:当直线与圆只有一个公共点时,直线为圆的切线,沿着过切点的直径对折图形后得到左右两边重合,根据对称的性质及平角的定义可得圆的切线垂直于过切点的直径.
解答:圆的切线的性质定理是:圆的切线垂直于过切点的直径.
故答案为:圆的切线垂直于过切点的直径
点评:此题考查了切线的性质定理,属于基础知识的考查,我们常常根据直线与圆相切,连接圆心与切点,利用此定理构造直角三角形来解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

圆的切线的性质定理是
圆的切线垂直于过切点的直径
圆的切线垂直于过切点的直径

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

圆的切线的性质定理是______.

查看答案和解析>>

科目:初中数学 来源:初三数学圆及旋转题库 第6讲:直线和圆的位置关系(一)(解析版) 题型:填空题

圆的切线的性质定理是   

查看答案和解析>>

科目:初中数学 来源:2013年福建省漳州市中考数学试卷 (解析版) 题型:解答题

(1)问题探究
数学课上,李老师给出以下命题,要求加以证明.
如图1,在△ABC中,M为BC的中点,且MA=BC,求证∠BAC=90°.
同学们经过思考、讨论、交流,得到以下证明思路:
思路一 直接利用等腰三角形性质和三角形内角和定理…
思路二 延长AM到D使DM=MA,连接DB,DC,利用矩形的知识…
思路三 以BC为直径作圆,利用圆的知识…
思路四…
请选择一种方法写出完整的证明过程;
(2)结论应用
李老师要求同学们很好地理解(1)中命题的条件和结论,并直接运用(1)命题的结论完成以下两道题:
①如图2,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求证:直线BD是⊙0的切线;
②如图3,△ABC中,M为BC的中点,BD⊥AC于D,E在AB边上,且EM=DM,连接DE,CE,如果∠A=60°,请求出△ADE与△ABC面积的比值.

查看答案和解析>>

同步练习册答案