精英家教网 > 初中数学 > 题目详情
如图,O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别交于E、F。
(1)求证:CD与⊙O相切;
(2)若正方形ABCD的边长为1,求⊙O的半径;
(3)对于以点M、E、A、F以及CD与⊙O的切点为顶点的五边形的五条边,从相等的关系考虑,你可以得出哪些结论?并给出证明。

解:(1)连结OM,作ON⊥CD于N
∵ ⊙O与BC相切
∴ OM⊥BC
∵四边形ABCD是正方形,
∴AC平分∠BCD,
∴OM=ON,
∴CD与⊙O相切;
(2))∵四边形ABCD为正方形,
∴AB=CD=1,∠B=90°,∠ACD=45°,
∴ AC=,∠NOC=45°=∠ACD
OC=
∵ AC=AO+OC=
∴AO+AO=
所以OA=2-
(3)ME=FN,AE=AF
证明:作OG⊥AD,OH⊥AB
∵ AC平分∠BAD
∴ OG=OH
∵ AE=AF
∴ AD=AB
∵ DF=BE与⊙O相切
∴ CM=CN
∵ BC=DC
∴ BM=DN
又∵∠B=∠D=90°
∴△EBM≌△FDN
∴ EM=FN。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,E为正方形ABCD的边AB上一点(不含A、B点),F为BC边的延长线上一点,△DAE旋转后能与△DCF重合.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)如果连接EF,那么△DEF是怎样的三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿精英家教网OM方向以
2
个单位每秒速度运动,运动时间为t.求:
(1)C的坐标为
 

(2)当t为何值时,△ANO与△DMR相似?
(3)△HCR面积S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值及S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,G为正方形ABCD的对称中心,A(0,2),B(1,0),直线OG交AB于E,DC于F,点Q从A出发沿A→B→C的方向以
5
个单位每秒速度运动,同时,点P从O出发沿OF方精英家教网向以
2
个单位每秒速度运动,Q点到达终点,点P停止运动,运动时间为t.求:
(1)求G点的坐标.
(2)当t为何值时,△AEO与△DFP相似?
(3)求△QCP面积S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为正方形ABCD的对称中心,正方形ABCD的边长为
10
,tan∠ABO=3,直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以
2
个单位每秒速度运动,运动时间为t,求:
(1)直接写出A、D、P的坐标;
(2)求△HCR面积S与t的函数关系式;
(3)当t为何值时,△ANO与△DMR相似?
(4)求以A、B、C、R为顶点的四边形是梯形时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•梅州一模)如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙0与BC相切于点M,与AB、AD分别相交于点E、F.
(1)求证:CD与⊙0相切;
(2)若⊙0的半径为
2
,求正方形ABCD的边长.

查看答案和解析>>

同步练习册答案