精英家教网 > 初中数学 > 题目详情
如图,BD是等腰三角形ABC的底边AC上的高线,DE∥BC,交AB于点E.则△BDE是等腰三角形.请在解答过程中的括号里填写理由.
解:∵AB=BC,BD⊥AC(已知)∴∠ABD=∠DBC
(三线合一)
(三线合一)

∵DE∥BC(已知),∴∠DBC=∠EDB,
(两直线平行,内错角相等)
(两直线平行,内错角相等)

∴∠ABD=∠EDB,∴BE=DE
(等角对等边)
(等角对等边)

∴△EDB是等腰三角形.
分析:由AB=BC,BD⊥AC(已知)得到∠ABD=∠DBC,是根据三线合一的性质证得的;由DE∥BC(已知),得到∠DBC=∠EDB,是根据平行线的性质得到的,由等角对等边,可由∠ABD=∠EDB,证得BE=DE.
解答:解:∵AB=BC,BD⊥AC(已知),
∴∠ABD=∠DBC (三线合一),
∵DE∥BC(已知),
∴∠DBC=∠EDB,(两直线平行,内错角相等)
∴∠ABD=∠EDB,
∴BE=DE (等角对等边)
∴△EDB是等腰三角形.
故答案为:(三线合一),(两直线平行,内错角相等),(等角对等边).
点评:此题考查了等腰三角形的性质与判定以及平行线的性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

操作实验:
精英家教网
如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.
所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.
根据上述内容,回答下列问题:
思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由;
精英家教网精英家教网
探究应用:如图(5),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD.
(1)BE与AD是否相等,为什么?
(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;
(3)∠DBC与∠DCB相等吗试?说明理由.

查看答案和解析>>

科目:初中数学 来源:江苏期末题 题型:探究题

操作实验:
如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.根据上述内容,回答下列问题:
思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由.
探究应用:
如图(5),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD.
(1)BE与AD是否相等?为什么?
(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由。
(3)∠DBC与∠DCB相等吗?试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

操作实验:

精英家教网

如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.
所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.
根据上述内容,回答下列问题:
思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由;

精英家教网

精英家教网

探究应用:如图(5),CB⊥AB,垂足为A,DA⊥AB,垂足为B.E为AB的中点,AB=BC,CE⊥BD.
(1)BE与AD是否相等,为什么?
(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;
(3)∠DBC与∠DCB相等吗试?说明理由.

查看答案和解析>>

科目:初中数学 来源:江苏省期末题 题型:解答题

操作实验:
如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.
所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.
根据上述内容,回答下列问题:
思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由;
探究应用:如图(5),CB⊥AB,垂足为A,DA⊥AB,垂足为B.E为AB的中点,AB=BC,CE⊥BD.
(1)BE与AD是否相等,为什么?
(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;
(3)∠DBC与∠DCB相等吗试?说明理由.

查看答案和解析>>

科目:初中数学 来源:江苏省期末题 题型:解答题

操作实验:
如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称,所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:
如果一个三角形有两条边相等,那么这两条边所对的角也相等.根据上述内容,回答下列问题:
思考验证:
(1)如图(4),在△ABC中,AB=AC,试说明∠B=∠C的理由;
探究应用:
(2)如图(5),CB⊥AB,垂足为A,DA⊥AB,垂足为B.E为AB的中点,AB=BC,CE⊥BD.
(i)BE与AD是否相等,为什么?
(ii)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;
(iii)∠DBC与∠DCB相等吗试?说明理由.

查看答案和解析>>

同步练习册答案