精英家教网 > 初中数学 > 题目详情

设a<b,用适当的不等号填空,并说明是根据不等式的哪一条基本性质:

3a________3b

答案:
解析:

因为a<b,并且3>0,由不等式基本性质2,得3a<3b.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

某班同学“五•一”期间组织外出爬山活动,花了230元租了一辆客车,如果参加活动的同学每人交7元租车费还不够,你明白这句话的含义吗?
典例分析:
例1在公路上,我们可以看到以下几种交通标志(如图),它们有着不同的意义.如果设汽车载重量为x吨,宽度为k米,高度为h米,速度为y千米/时,请你用不等式表示下列各种标志的意义.
精英家教网

思路分析:由题意可知,限重、限宽、限高、限速中的“限”字的意义就是不超过,也就是“≤”的意义.这样,该题即可迎刃而解.
解:x≤5.5   k≤2   h≤3.5   y≤30
方法点拨:生活中的各种标志图、徽标等信息,现已成为考试中的一种素材,解决这类题目,需要将信息转化为数学语言,比如将“大于”“超过”“不超过”“非负数”“不大于”等等,准确“翻译”为数学符号.通过本题可以使我们认识到关注身边的数学的重要性.
例2用适当的不等式表示下列关系:
(1)x的4倍与2的和是非负数,可表示为
 

(2)育才中学七年级一班学生数不到35人,设该班学生有x人,可表示为
 

(3)人的寿命可超过120岁.设人的寿命为x岁,则可表示为
 

(4)小林家有4口人,人均住房面积不足15平方米,则小林家的总住面积y平方米可表示为
 

思路分析:(1)中的“非负数”即“≥0”的数;(2)中的“不到”即“<”的意思;(3)中的“超过”即“>”的意思;(4)中的“不足”即“<”的意思.
答案:(1)4x+2≥0  (2)x<35  (3)x>120  (4)y<60
方法点拨:做这种类型的题时,要善于把实际问题中的一些“不到”“大于”“超过”“不小于”等数学术语,准确迅速地转化为数学符号.此类题是为学生以后列不等式解应用题做铺垫的,所以必须掌握好.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)“三等分角”是数学史上一个著名问题,但数学家已经证明,仅用尺规不可能“三等分任意角”.但对于特定度数的已知角,如90°角、45°角等,是可以用尺规进行三等分的.如图a,∠AOB=90°,我们在边OB上取一点C,用尺规以OC为一边向∠AOB内部作等边△OCD,作射线OD,再用尺规作出∠DOB的角平分线OE,则射线OD、OE将∠AOB三等分.仔细体会一下其中的道理,然后用尺规把图b中的∠MON三等分(已知∠MON=45°).(不需写作法,但需保留作图痕迹,允许适当添加文字的说明)
精英家教网
(2)数学家帕普斯借助函数给出了一种“三等分锐角”的方法(如图c):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=
1
x
的图象交于点P,以P为圆心、2OP长为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=
1
3
∠AOB.要明白帕普斯的方法,请研究以下问题:
①设P(a,
1
a
)、R(b,
1
b
),求直线OM对应的函数关系式(用含a、b的代数式表示).
②分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=
1
3
∠AOB.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:
(1)商场日销售量增加
2x
2x
件,每件商品盈利
50-x
50-x
元(用含x的代数式表示);
(2)要求降价不得低于20元,在上述条件不变、销售正常情况下,商场日盈利是否可达到5000元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某班同学“五•一”期间组织外出爬山活动,花了230元租了一辆客车,如果参加活动的同学每人交7元租车费还不够,你明白这句话的含义吗?
典例分析:
例1在公路上,我们可以看到以下几种交通标志(如图),它们有着不同的意义.如果设汽车载重量为x吨,宽度为k米,高度为h米,速度为y千米/时,请你用不等式表示下列各种标志的意义.


思路分析:由题意可知,限重、限宽、限高、限速中的“限”字的意义就是不超过,也就是“≤”的意义.这样,该题即可迎刃而解.
解:x≤5.5  k≤2  h≤3.5  y≤30
方法点拨:生活中的各种标志图、徽标等信息,现已成为考试中的一种素材,解决这类题目,需要将信息转化为数学语言,比如将“大于”“超过”“不超过”“非负数”“不大于”等等,准确“翻译”为数学符号.通过本题可以使我们认识到关注身边的数学的重要性.
例2用适当的不等式表示下列关系:
(1)x的4倍与2的和是非负数,可表示为______.
(2)育才中学七年级一班学生数不到35人,设该班学生有x人,可表示为______.
(3)人的寿命可超过120岁.设人的寿命为x岁,则可表示为______.
(4)小林家有4口人,人均住房面积不足15平方米,则小林家的总住面积y平方米可表示为______.
思路分析:(1)中的“非负数”即“≥0”的数;(2)中的“不到”即“<”的意思;(3)中的“超过”即“>”的意思;(4)中的“不足”即“<”的意思.
答案:(1)4x+2≥0 (2)x<35 (3)x>120 (4)y<60
方法点拨:做这种类型的题时,要善于把实际问题中的一些“不到”“大于”“超过”“不小于”等数学术语,准确迅速地转化为数学符号.此类题是为学生以后列不等式解应用题做铺垫的,所以必须掌握好.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:填空题

用适当的不等式表示下列关系:    
(1)x的4倍与2的和是非负数,可表示为_______。
(2)育才中学七年级一班学生数不到35人,设该班学生有x人,可表示为______。
(3)人的寿命可超过120岁.设人的寿命为x岁,则可表示为_______。
(4)小林家有4口人,人均住房面积不足15平方米,则小林家的总住面积y平方米可表示为_______。

查看答案和解析>>

同步练习册答案