精英家教网 > 初中数学 > 题目详情
如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.
求证:BD平分∠ABC.
证明见解析.

试题分析:在AB上截取ME=BN,证得△BND≌△EMD,进而证得∠DBN=∠MED,BD=DE,从而证得BD平分∠ABC.
试题解析:如图所示:在AB上截取ME=BN,

∵∠BMD+∠DME=180°,∠BMD+∠BND=180°,
∴∠DME=∠BND,
在△BND与△EMD中,

∴△BND≌△EMD(SAS),
∴∠DBN=∠MED,BD=DE,
∴∠MBD=∠MED,
∴∠MBD=∠DBN,
∴BD平分∠ABC.
【考点】1.全等三角形的判定与性质;2.角平分线的性质.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?  (填“是”或“不是”).
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为  
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

.___________确定一个圆.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,已知矩形AECF矩形BECD,且AF=FD,那么AE与AF的比值是(  )
A.
1+
2
2
B.
1+
3
2
C.
1+
5
2
D.
1+
6
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

六盘水市“琼都大剧院”即将完工,现需选用同一批地砖进行装修,以下不能镶嵌的地板是(  )
A.正五边形地砖 B.正三角形地砖 C.正六边形地砖 D.正四边形地砖

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

长为9,6,5,4的四根木条,选其中三根组成三角形,选法有(  )
A.1种B.2种C.3种D.4种

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为    

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在矩形ABCD中,已知AB=2cm,BC=3cm,现有一根长为2 cm的木棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P在运动过程中所围成的图形的面积为( )
A.6 cm2B.3 cm2C.(2+π)cm2D.(6-π)cm2

查看答案和解析>>

同步练习册答案