分析 (1)先计算判别式的值得到△=(k-2)2,然后根据非负数的性质得△≥0,则根据判别式的意义得到结论;
(2)把x=1代入方程得出关于k的方程,求得k的数值即可.
解答 (1)证明:∵△=(k+2)2-4×2k=k2-4k+4=(k-2)2≥0,
∴无论k取何实数,该方程总有实数根;
(2)解:把x=1代入方程x2-(k+2)x+2k=0得
1-(k+2)+2k=0,
解得:k=1.
点评 本题考查了一元二次方程根的判别式(△=b2-4ac):一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了根的意义.
科目:初中数学 来源: 题型:选择题
A. | -4 | B. | -2 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 无数个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com