精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,E、F分别是AB、AC上的点.有下列条件:①AD平分∠BAC;②DE⊥AB,DF⊥AC;③AD⊥EF,以此三个中的两个作为命题的条件,另一个作为命题的结论,构成三个命题:①②?③;①③?②;②③?①.
(1)以上三个命题中,属于真命题的是
①②?③或②③?①
①②?③或②③?①

(2)请选择一个真命题进行证明命题(先写出所选命题,然后证明).
分析:(1)根据角平分线的性质判断即可;
(2)根据角平分线上的点到角的两边的距离相等可得DE=DF,再利用“HL”证明Rt△ADE和△Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,然后利用等腰三角形三线合一的性质证明.
解答:(1)解:真命题是①②?③或②③?①;

(2)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,
在Rt△ADE和△Rt△ADF中,
AD=AD
DE=DF

∴Rt△ADE≌△Rt△ADF(HL),
∴AE=AF,
又∵AD平分∠BAC,
∴AD⊥EF.

证明:∵DE⊥AB,DF⊥AC;
∴点A,E,D,F共圆,且AD是直径,
∵AD⊥EF,
DE
=
DF

∴∠EAD=∠FAD,
即AD平分∠BAC.
点评:本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,熟记性质是解题的关键,难点在于先确定出真命题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案