精英家教网 > 初中数学 > 题目详情

【题目】CD经过∠BCA顶点C的一条直线,CA=CBEF分别是直线CD上两点,且∠BEC=CFA=

1)若直线CD经过∠BCA的内部,且EF在射线CD上,请解决下面两个问题:

①如图1,若∠BCA=90°,=90°,则BE_____CFEF____.(填”““=”

②如图2,若<∠BCA180°,请添加一个关于∠与∠BCA关系的条件__________,使①中的两个结论仍然成立,并证明两个结论成立.

2)如图3,若直线CD经过∠BCA的外部,∠=BCA,请提出EFBEAF三条线段数量关系的合理猜想(不要求证明).

【答案】1)①==;②∠α+ACB=180°;(2EF=BE+AF

【解析】

1)①求出∠BEC=AFC=90°,∠CBE=ACF,根据AAS证△BCE≌△CAF,推出BE=CFCE=AF即可;
②求出∠BEC=AFC,∠CBE=ACF,根据AAS证△BCE≌△CAF,推出BE=CFCE=AF即可;
2)求出∠BEC=AFC,∠CBE=ACF,根据AAS证△BCE≌△CAF,推出BE=CFCE=AF即可.

解:(1)①如图1中,

E点在F点的左侧,
BECDAFCD,∠ACB=90°,
∴∠BEC=AFC=90°,
∴∠BCE+ACF=90°,∠CBE+BCE=90°,
∴∠CBE=ACF
在△BCE和△CAF中,

∴△BCE≌△CAFAAS),
BE=CFCE=AF
EF=CF-CE=BE-AF
EF的右侧时,同理可证EF=AF-BE
EF=|BE-AF|
故答案为==;

②∠α+ACB=180°时,①中两个结论仍然成立;
证明:如图2中,

∵∠BEC=CFA=a,∠α+ACB=180°,
∴∠CBE=ACF
在△BCE和△CAF中,

∴△BCE≌△CAFAAS),
BE=CFCE=AF
EF=CF-CE=BE-AF
EF的右侧时,同理可证EF=AF-BE
EF=|BE-AF|
故答案为∠α+ACB=180°.

2)结论:EF=BE+AF
理由:如图3中,

∵∠BEC=CFA=a,∠a=BCA
又∵∠EBC+BCE+BEC=180°,∠BCE+ACF+ACB=180°,
∴∠EBC+BCE=BCE+ACF
∴∠EBC=ACF
在△BEC和△CFA中,

∴△BEC≌△CFAAAS),
AF=CEBE=CF
EF=CE+CF
EF=BE+AF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某中学校园内有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块边长为(a+b)米的正方形地块修建一座雕像,然后将阴影部分进行绿化.

1)求绿化的面积.(用含ab的代数式表示)

2)当a2b4时,求绿化的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, Ax轴负半轴上一点, Bx轴正半轴上一点, C(0,2),D(3,2).

(1)BCD的面积;

(2)ACBC,作∠CBA的平分线交COP,CAQ,判断∠CPQ与∠CQP的大小关系, 并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是________.(仅添加一对相等的线段或一对相等的角)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABC中,∠B=36°,∠ACB=110°AE是∠BAC的平分线.

(1)求∠AEC的度数;

(2)过△ABC的顶点ABC边上的高AD,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解题:

定义:如果一个数的平方等于-1,记为=-1,这个数i叫做虚数单位,把形如abi (ab为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似.例如,计算:

(1i )(23i )(12)(13)i32i

(1i )×(3i )1×3ii3(13)i142i

根据以上信息,完成下列问题:

1)填空:_______________________

2)计算:(2i )×(13i )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DADB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°60°(图中的点A、B、C、D、M、N均在同一平面内,CMAN).

(1)求灯杆CD的高度;

(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E.

(1)若∠A = 40°,求∠DCB的度数.

(2)若AE=4,△DCB的周长为13,求△ABC的周长.

查看答案和解析>>

同步练习册答案