精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程有两个相等的实数根.
求证:(1)方程x2+px+q=0有两个不相等的实数根;
(2)设方程x2+px+q=0的两个实数根是x1,x2,若|x1|<|x2|,则
【答案】分析:(1)由于一元二次方程有两个相等的实数根,根据判别式的意义得到(-2p)2-4×5×5q=0,则6p2-25q=0,即p2=q,且q>0,再计算方程x2+px+q=0的△=p2-4q=q-4q=q,由q>0得到△>0,可判断方程x2+px+q=0有两个不相等的实数根;
(2)由6p2-25q=0得q=,代入方程x2+px+q=0整理得到25x2+25px+6p2=0,即(5x+3p)(5x+2p)=0,由于|x1|<|x2|,则x1=-,x2=-,即可得到两根的比值.
解答:证明:(1)∵一元二次方程有两个相等的实数根,
∴(-2p)2-4×5×5q=0,
整理得6p2-25q=0,即p2=q,且q>0,
∴对于方程x2+px+q=0,△=p2-4q=q-4q=q,
∵q>0,
∴△>0,
∴方程x2+px+q=0有两个不相等的实数根;

(2)∵6p2-25q=0,
∴q=
∴x2+px+=0,即25x2+25px+6p2=0,
∴(5x+3p)(5x+2p)=0,
∵|x1|<|x2|,
∴x1=-,x2=-
=
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.也考查了一元二次方程根的判别式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案