精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知AB是⊙O的弦,半径OA=20cm,∠AOB=120°,求△AOB的面积.
分析:由垂径定理可得∠AOC=
1
2
∠AOB=60°,AC=BC=
1
2
AB,再解直角三角形即可求得△AOB的高和AB的长,即可求得面积.
解答:精英家教网解:过点O作OC⊥AB于C,如下图所示:
∴∠AOC=
1
2
∠AOB=60°,AC=BC=
1
2
AB,
∴在Rt△AOC中,∠A=30°
∴OC=
1
2
OA=10cm,
AC=
OA2-OC2
=
202-102
=10
3
(cm),
∴AB=2AC=20
3
cm
∴△AOB的面积=
1
2
AB•OC=
1
2
×20
3
×10=100
3
(cm2).
点评:本题考查了垂径定理的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案