分析 (1)①利用题意得出关于a,b的方程组进而求出答案;
②利用已知得出关于m的等式求出答案;
(2)根据题意得出:$\frac{ax+by}{2x+y}=\frac{ay+bx}{2y+x}$,进而得出a,b的关系.
解答 解:(1)①由题意得:$\left\{\begin{array}{l}\frac{a×1+(-1)b}{2×1+(-1)}=-2\\ \frac{4a+2b}{2×4+2}=1\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=3}\end{array}\right.$;
②由题意得:$\frac{1×(1-m)+3(-{m}^{2})}{2(1-m)+(-{m}^{2})}$=-2,
化简得:m2+m-1=0,
解得:${m_1}=\frac{{-1+\sqrt{5}}}{2},{m_2}=\frac{{-1-\sqrt{5}}}{2}$;
(2)由题意得:$\frac{ax+by}{2x+y}=\frac{ay+bx}{2y+x}$,
化简得:(a-2b)(x2-y2)=0,
∵该式对任意实数x、y都成立,
∴a-2b=0,
∴a=2b.
点评 此题主要考查了一元二次方程的应用以及新定义,根据题意得出正确等式是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com