【题目】我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线。如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,-3)AB为半圆直径,半圆圆心M(1,0),半径为2,则经过点D的“蛋圆”的切线的解析式为__________________。
【答案】y=-2x-3
【解析】
试题解:求切线解析式需要先求出二次函数解析式,因为切线过点D,所以切线解析式与二次函数解析式组成方程组,因只有一个交点,所以判别式为零。∵M(1,0)半径=2,∴A(-1,0),B(3,0),又D(0,-3),设二次函数的解析式为y=a(x-x1)(x-x2),将点A,B,C代入得;-3a=-3,∴a=1,∴y=(x+1)(x-3)=x2-2x-3.∵切线与蛋圆只有一个交点,且经过点D,设切线解析式为y=kx+b,∵过点D,∴b=-3,x2-2x-3=kx-3 ,即-(2+k)2=0,∵只有一个交点,∴判别式△=0,解得k=-2,∴y=-2x-3.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=ax+b(a,b为常数,且a≠0)与反比例函数y=(m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n).
(1)求反比例函数和一次函数的解析式;
(2)连结OA、OB,求△AOB的面积;
(3)直接写出当y1<y2<0时,自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AB=10,cosB=,点M是AB边的中点,将△ABC绕着点M旋转,使点C与点A重合,点A与点D重合,点B与点E重合,得到△DEA,且AE交CB于点P,那么线段CP的长是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线y=x+2与双曲线相交于点A(m,3).
(1)求反比例函数的表达式;
(2)画出直线和双曲线的示意图;
(3)若P是坐标轴上一点,当OA=PA时.直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一次函数y=kx+b与反比例函数y=的图象如图所示,则关于x的不等式kx+b﹣≤﹣2的解集为( )
A. 0<x≤2或x≤﹣4 B. ﹣4≤x<0或x≥2
C. ≤x<0或x D. x或
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.
(1)求点M到AB的距离;(结果保留根号)
(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)
(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?
(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形OABC,点P在边OA上(不与端点重合),点Q在边CO上(不与端点重合).
(1)如图(1),若∠BPQ=90°,且△OPQ与△PAB和△QPB相似,请写出表示这三个三角形相似的式子,并探究此时线段OQ、QB、BA之间的数量关系.
(2)若∠PQB=90°,且△OPQ与△PAB、△QPB都相似,如图(2),请重新写出表示这三个三角形相似的式子,并证明AB:OA=2:3.
(3)在(1)中,若OA=8,OC=8,OP=CQ.以矩形OABC的两边OA、OC所在的直线分别为x轴和y轴,建立平面直角坐标系,如图(3),若某抛物线顶点为P,点B在抛物线上.
①求此抛物线的解析式.
②过线段BP上一动点M(点M与点P、B不重合),作y轴的平行线交抛物线于点N,若记点M的横坐标为m,试求线段MN的长L与m之间的函数关系式,画出该函数的示意图,并指出m取何值时,L有最大值,最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过弧BD上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:△ECF∽△GCE;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tan∠G=,AH=3,求EM的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com