【题目】(1)请在横线上填写合适的内容,完成下面的证明:
如图1,AB∥CD,求证:∠B+∠D=∠BED.
证明:过点E引一条直线EF∥AB
∴∠B=∠BEF,( )
∵AB∥CD,EF∥AB
∴EF∥CD( )
∴∠D=( )
∴∠B+∠D=∠BEF+∠FED
即∠B+∠D=∠BED.
(2)如图2,AB∥CD,请写出∠B+∠BED+∠D=360°的推理过程.
(3)如图3,AB∥CD,请直接写出结果∠B+∠BEF+∠EFD+∠D=
【答案】两直线平行,内错角相等;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;∠FED;两直线平行,内错角相等;如图2,过点E引一条直线EF∥AB,∵EF∥AB,∴∠B+∠BEF=180°.∵AB∥CD,EF∥AB,∴EF∥CD,∴∠FED+∠D=180°,∴∠B+∠BEF+∠FED+∠D=180°+180°=360°,即∠B+∠BED+∠D=360°;540°
【解析】解:(1)过点E引一条直线EF∥AB,
∵EF∥AB,
∴∠B=∠BEF(两直线平行,内错角相等),
∵AB∥CD,EF∥AB,
∴EF∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行),
∴∠D=∠FED(两直线平行,内错角相等).
答案为:两直线平行,内错角相等;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;∠FED;两直线平行,内错角相等.
(2)如图2,过点E引一条直线EF∥AB,
∵EF∥AB,
∴∠B+∠BEF=180°.
∵AB∥CD,EF∥AB,
∴EF∥CD,
∴∠FED+∠D=180°,
∴∠B+∠BEF+∠FED+∠D=180°+180°=360°,即∠B+∠BED+∠D=360°
(3)如图3,分别过点EF作EG∥AB,HF∥CD,
∵EG∥AB,
∴∠B+∠BEG=180°.
∵HF∥CD,
∴∠D+∠HFD=180°.
∵AB∥CD,EG∥AB,HF∥CD,
∴EG∥HF,
∴∠GEF+∠HFE=180°,
∴∠B+∠BEF+∠EFD+∠D=540°.
所以答案是:540°.
【考点精析】掌握平行线的性质是解答本题的根本,需要知道两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.
科目:初中数学 来源: 题型:
【题目】如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是( )
A.28
B.29
C.30
D.31
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面推理过程:
如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE= .( )
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF=
∠ABE= .( )
∴∠ADF=∠ABE
∴DF∥ .()
∴∠FDE=∠DEB.( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;
(2)请画出△ABC关于原点对称的△A2B2C2;
(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】丽华根据演讲比赛中九位评委所给的分数作了如下表格:
平均数 | 中位数 | 众数 | 方差 |
8.5 | 8.3 | 8.1 | 0.15 |
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
A.平均数
B.众数
C.方差
D.中位数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)仔细观察,在图2中有 个以线段AC为边的“8字形”
(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数.
(3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠D、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;
(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com