精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=(x>0)的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.

(1)求反比例函数的解析式;
(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).

(1)y=   (2)见解析   (3)<a<3

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

平面直角坐标系中,一次函数和反比例函数的图象都经过点.
(1)求的值和一次函数的表达式;
(2)点B在双曲线上,且位于直线的下方,若点B的横、纵坐标都是整数,直接写出点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

是任意两个不等实数,我们规定:满足不等式的实数的所有取值的全体叫做闭区间,表示为. 对于一个函数,如果它的自变量与函数值满足:当m≤≤n时,有m≤≤n,我们就称此函数是闭区间上的“闭函数”.
(1)反比例函数是闭区间上的“闭函数”吗?请判断并说明理由;
(2)若一次函数是闭区间上的“闭函数”,求此函数的表达式;
(3)若二次函数是闭区间上的“闭函数”,直接写出实数 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数y=kx+3的图象分别交x轴、y轴于点C、点D,与反比例函数的图象在第四象限相交于点P,并且PA⊥x轴于点A,PB⊥y轴于点B,已知B(0,-6)且SDBP=27.
(1)求上述一次函数与反比例函数的表达式;
(2)设点Q是一次函数y=kx+3图象上的一点,且满足△DOQ的面积是△COD面积的2倍,直接写出点Q的坐标.
(3)若反比例函数的图象与△ABP总有公共点,直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.

(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知直线y=-2x+4与x轴交于A点,与y轴交于B点.
(1)求A、B两点的坐标;
(2)求直线y=-2x+4与坐标轴围成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线y=-x+6分别与x轴、y轴交于A、B两点;直线y=x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).

(1)求点C的坐标;
(2)当0<t<5时,求S与t之间的函数关系式,并求S的最大值;
(3)当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某地区冬季干旱,康平社区每天需从外地调运饮用水60吨.有关部门紧急部署,从甲、乙两水厂调运饮用水到供水点,甲厂每天最多可调出40吨,乙厂每天最多可调出45吨.从两水厂运水到康平社区供水点的路程和运费如下表:

 
到康平社区供水点的路程(千米)
运费(元/吨·千米)
甲厂
20
4
乙厂
14
5
(1)若某天调运水的总运费为4450元,则从甲、乙两水厂各调运了多少吨饮用水?
(2)设从甲厂调运饮用水x吨,总运费为W元,试写出W关于x的函数关系式,并确定x的取值范围.怎样安排调运方案才能使每天的总运费最省?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某公司准备与汽车租赁公司签订租车合同.以每月用车路程x(km)计算,甲汽车租赁公司的月租费元,乙汽车租赁公司的月租费是元.如果与x之间的关系如图所示.

(1)求与x之间的函数关系
(2)怎样选用汽车租赁比较合算?

查看答案和解析>>

同步练习册答案