【题目】张老师在讲解复习《圆》的内容时,用投影仪屏幕展示出如下内容:
如图,内接于,直径的长为2,过点的切线交的延长线于点.
张老师让同学们添加条件后,编制一道题目,并按要求完成下列填空.
(1)在屏幕内容中添加条件,则的长为______.
(2)以下是小明、小聪的对话:
小明:我加的条件是,就可以求出的长
小聪:你这样太简单了,我加的是,连结,就可以证明与全等.
参考上面对话,在屏幕内容中添加条件,编制一道题目(此题目不解答,可以添线、添字母).______.
【答案】3 ,求的长
【解析】
(1)连接OC,如图,利用切线的性质得∠OCD=90°,再根据含30°的直角三角形三边的关系得到OD=2,然后计算OA+OD即可;
(2)添加∠DCB=30°,求ACAC的长,利用圆周角定理得到∠ACB=90°,再证明∠A=∠DCB=30°,然后根据含30°的直角三角形三边的关系求AC的长.
解:(1)连接OC,如图,
∵CD为切线,
∴OC⊥CD,
∴∠OCD=90°,
∵∠D=30°,
∴OD=2OC=2,
∴AD=AO+OD=1+2=3;
(2)添加∠DCB=30°,求AC的长,
解:∵AB为直径,
∴∠ACB=90°,
∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,
∴∠ACO=∠DCB,
∵∠ACO=∠A,
∴∠A=∠DCB=30°,
在Rt△ACB中,BC= AB=1,
∴AC= = .
故答案为3;,求的长.
科目:初中数学 来源: 题型:
【题目】如图1,已知直线y=a与抛物线交于A、B两点(A在B的左侧),交y轴于点C
(1)若AB=4,求a的值
(2)若抛物线上存在点D(不与A、B重合),使,求a的取值范围
(3)如图2,直线y=kx+2与抛物线交于点E、F,点P是抛物线上的动点,延长PE、PF分别交直线y=-2于M、N两点,MN交y轴于Q点,求QM·QN的值。
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有两个不相等的实数根,求k的取值范围;
(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勤俭节约一直是中华民族的传统美德,某中学校团委准备以“勤俭节约”为主题开展一次演讲比赛,为此先对同学们每月零花钱的数额进行一些了解,随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
组别 | 分组(单位:元) | 人数 |
A | 0≤x<30 | 4 |
B | 30≤x<60 | a |
C | 60≤x<90 | b |
D | 90≤x<120 | 8 |
E | 120≤x<150 | 2 |
根据以上图表,解答下列问题:
(1)填空:这次调查的同学共有 人,a+b= ,m= ;
(2)求扇形统计图中扇形B的圆心角的度数;
(3)该校共有1200名学生,请估计每月零花钱的数额在60≤x<90范围的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在△ADC中,∠ADC=90°,以DC为直径作半圆⊙O,交边AC于点F,点B在CD的延长线上,连接BF,交AD于点E,∠BED=2∠C.
(1)求证:BF是⊙O的切线;
(2)若BF=FC,,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(- 3,4),点B的坐标为(6,n).
(1)求该反比例函数和一次函数的解析式;
(2)连接OB,求△AOB 的面积;
(3)在x轴上是否存在点P,使△APC是直角三角形. 若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某博物馆每周都吸引大量中外游客前来参观,如果游客过多,对馆中的珍贵文物会产生不利影响,但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入,因此,博物馆采取了涨浮门票价格的方法来控制参观人数,在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这种情况下,如果要保证每周万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海底隧道,西人工岛上的A点和东人工岛上的B点间的距离约为5.6千米,点C是与西人工岛相连的大桥上的一点,A,B,C在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达P点时观测两个人工岛,分别测得与观光船航向的夹角∠DPA=18°,∠DPB=53°,求此时观光船到大桥AC段的距离的长.
参考数据:°,°,°,°,°,°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是等边三角形ABC内一点,将线段BP绕点B逆时针旋转60°得到线段BQ,连接AQ.若PA=4,PB=5,PC=3,则四边形APBQ的面积为_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com