【题目】如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B.C重合),过点F的反比例函数y=的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若k=,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DEEG=,则k=1.其中正确的命题的序号是____________(填序号).
【答案】②④
【解析】
(1)若k=4,则计算,故命题①错误;
(2)如答图所示,若k=,可证明直线EF是线段CN的垂直平分线,故命题②正确;
(3)因为点F不经过点C(4,3),所以k≠12,故命题③错误;
(4)求出直线EF的解析式,得到点D、G的坐标,然后求出线段DE、EG的长度;利用算式DEEG=,求出k=1,故命题④正确.
命题①错误,理由如下:
∵k=4,
∴
∴
∴S△OEF=S矩形AOBCS△AOES△BOFS△CEF
=S矩形AOBC,
∴,故命题①错误;
命题②正确,理由如下:
∵
∴
∴
如答图,过点E作EM⊥x轴于点M,则EM=3,OM=;
在线段BM上取一点N,使得EN=CE=,连接NF.
在Rt△EMN中,由勾股定理得:
∴
在Rt△BFN中,由勾股定理得:
∴NF=CF,
又∵EN=CE,
∴直线EF为线段CN的垂直平分线,即点N与点C关于直线EF对称,
故命题②正确;
命题③错误,理由如下:
由题意,点F与点C(4,3)不重合,所以k≠4×3=12,故命题③错误;
命题④正确;理由如下:
为简化计算,不妨设k=12m,
设直线EF的解析式为y=ax+b,则有
解得
∴
令x=0,得y=3m+3,∴D(0,3m+3);
令y=0,得x=4m+4,∴G(4m+4,0).
如答图,过点E作EM⊥x轴于点M,则OM=AE=4m,EM=3.
在Rt△ADE中,AD=ODOA=3m,AE=4m,由勾股定理得:DE=5m;
在Rt△MEG中,MG=OGOM=(4m+4)4m=4,EM=3,由勾股定理得:EG=5.
∴DEEG=5m×5=25m=,解得 ,
∴k=12m=1,故命题④正确,
综上所述,正确的命题是:②④,
故答案为:②④.
科目:初中数学 来源: 题型:
【题目】随着人民的生活水平的不断提高,学生身边的零用钱也多了.夏雪同学调查了班级同学身上有多少零用钱,将每位同学的零用钱记录下来,下面是全班40名同学的零用钱的数目(单位:元)
2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,
5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.
(1)请你写出同学的零用钱(0元,2元,5元,6元8元)出现的频数;
(2)求出同学的零用钱的平均数、中位数和众数;
(3)假如老师随机问一个同学的零用钱,老师最有可能得到的回答是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,P是抛物线y=-x2+3x上一点,且在x轴上方,过点P分别向x轴、y轴作垂线,得到矩形PMON.若矩形PMON的周长随点P的横坐标m增大而增大,则m的取值范围是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,如果每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球从发射出到第一次落在桌面的运行过程中,设乒乓球与端点A的水平距离为x(米),距桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:
t(秒) | 0 | 0.16 | 0.2 | 0.4 | 0.6 | 0.64 | 0.8 | … |
x(米) | 0 | 0.4 | 0.5 | 1 | 1.5 | 1.6 | 2 | … |
y(米) | 0.25 | 0.378 | 0.4 | 0.45 | 0.4 | 0.378 | 0.25 | … |
(1)如果y是t的函数,
①如图,在平面直角坐标系tOy中,描出了上表中y与t各对对应值为坐标的点.请你根据描出的点,画出该函数的图象;
②当t为何值时,乒乓球达到最大高度?
(2)如果y是关于x的二次函数,那么乒乓球第一次落在桌面时,与端点A的水平距离是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座。
(1)计划到2020年底,全省5G基站的数量是多少万座?;
(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l: 与x轴.y轴交于B,A两点,点D,C分别为线段AB,OB的中点,连结CD,如图,将△DCB绕点B按顺时针方向旋转角,如图.
(1)连结OC,AD,求证∽;
(2)当0°<<180°时,若△DCB旋转至A,C,D三点共线时,求线段OD的长;
(3)试探索:180°<<360°时,是否还有可能存在A,C,D三点共线的情况,若存在,求出此直线的表达式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在Rt△ABC中,∠ACB=90°,AC=6cm,动点P从点B出发,沿折线B→A→C路线匀速运动到C停止,动点Q从点C出发,沿折线C→B→A路线匀速运动到A停止,如点P、Q同时出发运动t秒后,如图(2)是△BPC的面积S1(cm2)与t(秒)的函数关系图象,图(3)是△AQC的面积S2(cm2)与t(秒)的函数关系图象:
(1)点P运动速度为 cm/秒;Q运动的速度 cm/秒;
(2)连接PQ,当t为何值时,PQ∥BC;
(3)如图(4)当运动t(0≤t≤2)秒时,是否存在这样的时刻,使以PQ为直径的⊙O与Rt△ABC的一条边相切,若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com