【题目】已知AB为⊙O的直径.
(1)如图a,点D为 的中点,当弦BD=AC时,求∠A.
(2)如图b,点D为的中点,当AB=6,点E为BD的中点时,求OE的长.
(3)如图c,点D为上任意一点(不与A、C重合),若点C为的中点,探求BD、AD、CD之间的数量关系,直接写出你探求的结论,不要求证明.
【答案】(1)30°;(2);(3)BD-AD=CD
【解析】
(1)连接OC,由BD=AC证明,进一步证明C为的中点,从而可证∠A=∠COB=××180°=30°;
(2)连结OD,BC,证明△DEF≌△BEC,分别OD,OF,BC,DF,AC以及EF的长,
在Rt△OFE中运用勾股定理即可求得OE=;
(3)连接BC,可证明∠BAC=∠BDC=45°,过点C作CF⊥CD交BD于点F,证明△ACD≌△BCF,根据BD=BF+DF可得结论.
(1) 连结OC
∵点D为的中点,
∴
∵BD=AC
∴
∴,即点C为的中点.
∴
∴∠A=∠COB=××180°=30°.
(2)连结OD,BC.
∵AB为⊙O的直径,
∴∠C=90o
∵点D为的中点,半径OD所在的直线为⊙O的对称轴
∴点A的对应点为C
∴OD⊥AC,OD分AC,即:AF=CF,
∵点E为BD的中点,
∴BE=DE,
在△DEF和△BEC中
∴△DEF≌△BEC
∴CE=EF, BC=DF
∵AO=BO, AF=CF
∴OF=BC=DF ,
又AB=6,
∴OD=3
∴OF=1, BC=DF=2
在Rt△ABC中,AB=6,BC=2,由勾股定理求得AC=4,
∵点F为AC的中点,点E为FC的中点
∴EF=,
在Rt△OFE中,EF=,OF=1,由勾股定理求得OE=
(3)BD、AD、CD之间的关系为:BD-AD=CD
连接BC,
∵AB是直径,点C为的中点,
∴∠ACB=90°,AC=BC,
∴∠BAC=∠BDC=45°,
过点C作CF⊥CD交BD于点F,
∴△DCF是等腰直角三角形,
∴CD=CF,DF=CD,
∵∠ACD=∠BCF=90°-∠ACF,
又AC=BC,CD=CF
∴△ACD≌△BCF
∴AD=BF
∵BD=BF+DF
∴BD=AD+CD,即BD-AD=CD.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:
(1)求抛物线的解析式;
(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.
注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,D是边BC上一点,以点A为圆心,AD长为半径作弧,如果与边BC有交点E(不与点D重合),那么称为的A-外截弧.例如,图中是的一条A-外截弧.在平面直角坐标系xOy中,已知存在A-外截弧,其中点A的坐标为,点B与坐标原点O重合.
(1)在点,,,中,满足条件的点C是_______.
(2)若点C在直线上.
①求点C的纵坐标的取值范围.
②直接写出的A-外截弧所在圆的半径r的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=10,BC=8,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,则A′E的长为( )
A. 8 B. 7 C. 6 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠A=60°,∠ABC=45°,AB=4,点D为AC上一动点,以BD为直径的⊙O交BC于点E,交AB于点F,则EF的最小值是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场销售一批名牌衬衫,平均每天可售出40件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件.
(1)若商场平均每天要盈利2400元,每件衬衫应降价多少元?
(2)若该商场要每天盈利最大,每件衬衫应降价多少元?盈利最大是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为迎接国庆节,某商店购进了一批成本为每件30元的纪念商品.经调查发现,该商品每天的销售量(件与销售单价(元满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量与销售单价的函数关系式;
(2)若商店按不低于成本价,且不高于60元的单价销售,则销售单价定为多少,才能使销售该商品每天获得的利润(元最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】例:利用函数图象求方程x2﹣2x﹣2=0的实数根(结果保留小数点后一位).
解:画出函数y=x2﹣2x﹣2的图象,它与x轴的公共点的横坐标大约是﹣0.7,2.7.所以方程x2﹣2x﹣2=0的实数根为x1≈﹣0.7,x2≈2.7.我们还可以通过不断缩小根所在的范围估计一元二次方程的根.……这种求根的近似值的方法也适用于更高次的一元方程.
根据你对上面教材内容的阅读与理解,解决下列问题:
(1)利用函数图象确定不等式x2﹣4x+3<0的解集是 ;利用函数图象确定方程x2﹣4x+3=的解是 .
(2)为讨论关于x的方程|x2﹣4x+3|=m解的情况,我们可利用函数y=|x2﹣4x+3|的图象进行研究.
①请在网格内画出函数y=|x2﹣4x+3|的图象;
②若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解,则m的取值范围为 ;
③若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解x1,x2,x3,x4(x1<x2<x3<x4),满足x4﹣x3=x3﹣x2=x2﹣x1,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,
(1)求证:AE=CE;
(2)求证:四边形ABDF是平行四边形;
(3)若AB=2,AF=4,∠F=30°,则四边形ABCF的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com