精英家教网 > 初中数学 > 题目详情
已知a、b、c为△ABC的三条边,且满足a2+b2+c2=10a+24b+26c-338.
(1)试判断三角形的形状;
(2)求三角形最长边上的高.
分析:(1)先将式子进行化简,配方成完全平方的形式,求得a,b,c,根据勾股定理的逆定理进行判断即可;
(2)根据(1)求出三角形的面积,再由最长边乘以最长边上的高除以2也等于这个三角形的面积,求出最长边上的高.
解答:解:(1)∵a2+b2+c2=10a+24b+26c-338
∴a2-10a+b2-24b+c2-26c+338=0
a2-10a+25+b2-24b+144+c2-26c+169=0
(a-5)2+(b-12)2+(c-13)2=0(2分)
∴(a-5)2=0,(b-12)2=0,(c-13)2=0
∴a=5,b=12,c=13(3分)
∴a2+b2=c2=169
∴△ABC是直角三角形;(4分)

(2)△ABC最长边为c,
设c上的高为h.
S△ABC=
1
2
ab

=
1
2
×5×12
=30,
又∵S△ABC=
1
2
ch
=30
1
2
•13h
=30,
∴h=
60
13
.(7分)
点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;直角三角形有两种求面积的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•南昌)已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.
(1)①折叠后的
AB
所在圆的圆心为O′时,求O′A的长度;
     ②如图2,当折叠后的
AB
经过圆心为O时,求
AOB
的长度;
     ③如图3,当弦AB=2时,求圆心O到弦AB的距离;
(2)在图1中,再将纸片⊙O沿弦CD折叠操作.
①如图4,当AB∥CD,折叠后的
AB
CD
所在圆外切于点P时,设点O到弦AB、CD的距离之和为d,求d的值;
②如图5,当AB与CD不平行,折叠后的
AB
CD
所在圆外切于点P时,设点M为AB的中点,点N为CD的中点,试探究四边形OMPN的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一圆锥的母线长为12,底面半径为4,则该圆锥的侧面积是
48π
48π

查看答案和解析>>

科目:初中数学 来源: 题型:

已知两圆的半径分别为5cm、8cm,且它们的圆心距为8cm,则两圆的位置关系为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•贵阳)已知:如图,CD为⊙O的直径,CD⊥AB,M为垂足,DM=2cm,弦AB=8cm,则⊙O的半径为
5
5
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•岳池县模拟)如图,在平面直角坐标系xoy中,已知抛物线顶点N的坐标为(-1.-
92
),此抛物线交y轴于B(0,-4),交x轴于A、C两点且A点在C点左边.
(1)求抛物线解析式及A、C两点的坐标.
(2)如果点M为第三象限内抛物线上一个动点且它的横坐标为m,设△AMB的面积为S,求S关于m的函数关系式并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=x上的动点,判断有几个位置使得以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

查看答案和解析>>

同步练习册答案