【题目】如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是( )
A.
B.
C.
D.
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.关系:①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.
(1)写出所有成立的情况(只需填写序号);
(2)选择其中一种证明.
已知:在四边形ABCD中, ;
求证:四边形ABCD是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.
(1)求证:△ABC≌△ADE;
(2)求证:CA平分∠BCD;
(3)如图(2),设AF是△ABC的BC边上的高,求证:EC=2AF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.
(1)如图1,若AE、CD为△ABC的角平分线:
①求∠AFD的度数;
②若AD=3,CE=2,求AC的长;
(2)如图2,若∠EAC=∠DCA=30°,求证:AD=CE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点
写出下一步“马”可能到达的点的坐标为_ (写出所有可能的点的坐标);
顺次连接中的所有点,得到的图形是 _图形(填“中心对称”或“轴对称”;
将中得到的图形各顶点的坐标都乘以请在平面直角坐标系中画出变化后的图形,并与原图形比较,形状和大小有怎样的变化?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《如果想毁掉一个孩子,就给他一部手机!》这是微信朋友圈热传的一篇文章.国际上,法国教育部宣布从2018年9月新学期起,小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图所示的统计图,已知“查资料”的人数是人.
请你根据以上信息解答下列问题:
求出本次随机抽取的学生共有多少人;
在扇形统计图中,“玩游戏”对应的百分比为______________,圆心角度数是_______________度;
补全条形统计图;
该校共有学生人,估计每周使用手机时间在小时以上(不含小时)的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知,满足点在轴的负半轴上,直角顶点在轴上,点在轴上方.
如图1所示,若点与原点重合,点的坐标是,则点的坐标是 ;
如图2所示,若点的坐标是,过点作轴于,请求出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c (a、b、c为常数且a≠0)中的x与y的部分对应值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四个结论:
①二次函数y=ax2+bx+c 有最小值,最小值为-3;
②抛物线与y轴交点为(0,-3);
③二次函数y=ax2+bx+c 的图像对称轴是x=1;
④本题条件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正确结论的个数是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com