精英家教网 > 初中数学 > 题目详情
如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.
(1)填空:∠CAM=
 
度;
(2)若点D在线段AM上时,求证:△ADC≌△BEC;
(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.
考点:全等三角形的判定与性质,等边三角形的性质
专题:
分析:(1)根据等边三角形的性质可以直接得出结论;
(2)根据等边三角形的性质就可以得出AC=AC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;
(3)分情况讨论:当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出△ACD≌△BCE而有∠CBE=∠CAD=30°而得出结论;当点D在线段MA的延长线上时,如图3,通过得出△ACD≌△BCE同样可以得出结论.
解答:解:(1)∵△ABC是等边三角形,
∴∠BAC=60°.
∵线段AM为BC边上的中线
∴∠CAM=
1
2
∠BAC,
∴∠CAM=30°.
故答案为:30;
(2)∵△ABC与△DEC都是等边三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACD+∠DCB=∠DCB+∠BCE
∴∠ACD=∠BCE.
在△ADC和△BEC中
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(SAS);
(3)∠AOB是定值,∠AOB=60°,
理由如下:
①当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,则∠CBE=∠CAD=30°,
又∠ABC=60°
∴∠CBE+∠ABC=60°+30°=90°,
∵△ABC是等边三角形,线段AM为BC边上的中线
∴AM平分∠BAC,即∠BAM=
1
2
∠BAC=
1
2
×60°=30°

∴∠BOA=90°-30°=60°.
②当点D在线段AM的延长线上时,如图2,
∵△ABC与△DEC都是等边三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACB+∠DCB=∠DCB+∠DCE
∴∠ACD=∠BCE
在△ACD和△BCE中
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(SAS)
∴∠CBE=∠CAD=30°,
同理可得:∠BAM=30°,
∴∠BOA=90°-30°=60°.
③当点D在线段MA的延长线上时,
∵△ABC与△DEC都是等边三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACD+∠ACE=∠BCE+∠ACE=60°
∴∠ACD=∠BCE
在△ACD和△BCE中
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(SAS)
∴∠CBE=∠CAD
同理可得:∠CAM=30°
∴∠CBE=∠CAD=150°
∴∠CBO=30°,∠BAM=30°,
∴∠BOA=90°-30°=60°.
综上,当动点D在直线AM上时,∠AOB是定值,∠AOB=60°.
点评:本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

计算
(1)(1-
1
6
+
3
4
)×(-48);
(2)(-1)10×2+(-2)3÷4;
(3)-14-(1-0.5)×[2-(-3)2];
(4)解方程:3(x-1)+2(x-1)=-10.

查看答案和解析>>

科目:初中数学 来源: 题型:

因式分解:
①9a2-16b4           
②3x2y3-12xy4+12y5

查看答案和解析>>

科目:初中数学 来源: 题型:

使用一条长为18cm的细绳围成一个等腰三角形.如果腰长是底边长的2倍,那么各边的长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

老张将a元人民币存入银行两年,有两种存款方式供选择.甲种方案:定期两年,到期时取出本和息(称为本息和),利息每年为8%;乙种方案:定期一年,到期时,将领到的利息与本金再一同在银行定期一年,到期再取出本息和,且定期一年的年利息为7.5%,试通过计算说明,老张哪种存款方式较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

某超市推出如下优惠方案:
(1)一次购物不超过100元不享受优惠;
(2)一次购物超过100元、但不超过300元一律9折;
(3)一次购物超过300元一律八折.
王波两次购物分别付款80元,252元,如果王波一次性购买与上两次相同的商品.则应付款多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

解决问题
小明的妈妈在打扫房间时,不小心把一块如图的钟表(钟表盘上均匀分布着60条刻度线)摔坏了.小明找到带有指针的一块残片,其上的时针和分针恰好分别指向两条相邻的刻度线.
①若这块残片所表示的时间是2点t分,求t的值;
②除了(1)中的答案,你知道这块残片所表示的时间还可以是0点~12点中的几点几分吗?写出你的求解过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,对往年的市场行情和生产情况进行了调查,提供了两个信息图,如甲、乙两图.(注:甲、乙两图中的A,B,C,D,E,F,G,H所对应的纵坐标分别指相应月份每千克该种蔬菜的售价和成本.生产成本6月份最低,甲图的图象是线段,乙图的图象是抛物线的一部分).请你根据图象提供的信息说明:

(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价-成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1小于2的有理数.请你在数轴上表示出一范围,使得这个范围同时满足以下三个条件:
(1)至少有100对互为相反数和100对互为倒数;
(2)有最小的正整数;
(3)这个范围内最大的数与最小的数表示的点的距离大于3但小于4.

查看答案和解析>>

同步练习册答案