精英家教网 > 初中数学 > 题目详情
如图:△ABC中,∠BAC=90°,AB=AC,点D是斜边BC的中点.
(1)如图1,若E、F分别是AB、AC上的点,且AE=CF.求证:①△AED≌△CFD;②△DEF为等腰直角三角形.
(2)如图2,点F、E分别D在CA、AB的延长线上,且AE=CF,猜想△DEF是否为等腰直角三角形?如果是请给出证明.
分析:(1)①利用等腰直角三角形的性质得出AD=BD=DC,进而利用全等三角形的判定得出答案;
②利用全等三角形的性质得出DE=DF,∠ADE=∠CDF进而得出△DEF为等腰直角三角形;
(2)首先利用已知得出AD=BD=DC,进而利用全等三角形的判定得出△AED≌△CFD.
解答:(1)证明:①∵∠BAC=90°,AB=AC,D为BC中点,
∴∠BAD=∠DAC=∠B=∠C=45°,
∴AD=BD=DC,
∵在△AED和△CFD中,
AE=CF
∠EAD=∠DAC
AD=DC

∴△AED≌△CFD(SAS);

②∵△AED≌△CFD,
∴DE=DF,∠ADE=∠CDF,
又∵∠CDF+∠ADF=90°,
∴△DEF为等腰直角三角形;

(2)△DEF为等腰直角三角形,
理由:∵∠BAC=90° AB=AC,D为BC中点
∴∠BAD=∠DAC=∠B=∠C=45°,
∴AD=BD=DC,
∵在△AED和△CFD中,
AE=CF
∠EAD=∠C
AD=CD

∴△AED≌△CFD(SAS);   
∴DE=DF∠ADE=∠CDF,
又∵∠CDF-∠ADF=90°,
∴△DEF为等腰直角三角形.
点评:此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,根据已知得出AD=BD=DC是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案