精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC DEF 中,给出下列四组条件:

AB=DE, BC=EF, AC=DF

AB=DE, B=E, BC=EF

③∠B=E, BC=EF, C=F

④∠A=D, B=E, AB=DF

其中能使ABCDEF 的条件有(

A.1 B.2 C.3 D.4

【答案】C

【解析】

要判断能不能使△ABC≌△DEF一定要熟练运用判定方法判断,做题时注意两边与其中一边的对角相等的两个三角形不一定全等,要根据已知条件的位置来选择判定方法.

根据全等三角形的判定方法可知:

AB=DEBC=EFAC=DF,用的判定方法是“边边边”;

AB=DE,∠B=EBC=EF,用的判定方法是“边角边”;

③∠B=EBC=EF,∠C=F用的判定方法是“角边角”;

④∠A=D, B=E, AB=DF,不一定全等”;

因此能使△ABC≌△DEF的条件共有3

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】反比例函数y=的图象既是_________图形又是_________图形,它有_________条对称轴,且对称轴互相_________,对称中心是_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】要在一块长52 m,宽48 m的矩形绿地上,修建同样宽的两条互相垂直的甬路,下面分别是小亮和小颖的设计方案.

小亮设计的方案如图①所示,甬路宽度均为x m,剩余的四块绿地面积共2300 m2.

小颖设计的方案如图②所示,BC=HE=x,ABCD,HGEF,ABEF,1=60°.

(1)求小亮设计方案中甬路的宽度x;

(2)求小颖设计方案中四块绿地的总面积.(友情提示:小颖设计方案中的x与小亮设计方案中的x取值相同)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠ABC=90°AB=BC,三角形的顶点在相互平行的三条直线abc上,且ab之间的距离为1bc之间的距离为2,则AC2=(  )

A.13B.20C.25D.26

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了测量校园内一棵大树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计了如图的测量方案,把镜子放在离树(AB)8.7m的点E处,然后沿直线BE后退到点D,这时恰好在镜子里看到树顶点A,再用皮尺测量得DE2.7m,观察者眼睛距地面的高CD1.6m,请你计算树(AB)的高度.(精确到0.1m)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC在直角坐标系中,

1)请写出△ABC各点的坐标.

2)求出△ABC的面积.

3)若把△ABC向上平移2个单位,再向右平移2个单位得到△ABC′,请在图中画出△ABC′,并写出点A′、B′、C′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了庆祝校园艺术节,准备购买一批盆花布置校园.已知1A种花和2B种花一共需13,2A种花和1B种花一共需11.

(1)1A种花和1B种花的售价各是多少元?

(2)学校准备购进这两种盆花共100,并且A种盆花的数量不超过B种盆花数量的2,请求出A种盆花的数量最多是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线将这八个正方形分成面积相等的两部分,则该直线的解析式为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量(千克)与销售单价(元/千克)的函数关系如图所示:

1)求的函数解析式;

2)求当时销售西瓜获得的利润的最大值.

查看答案和解析>>

同步练习册答案