精英家教网 > 初中数学 > 题目详情

【题目】邮递员骑摩托车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B 村,然后向北骑行9kmC村,最后回到邮局.

(1)以邮局为原点,以向北方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;

(2)C村离A村有多远?

(3)若摩托车每100km耗油3升,这趟路共耗油多少升?

【答案】(1)见解析;(2)点与点的距离为共耗油量为升.

【解析】

(1)以邮局为原点,以向北方向为正方向用1cm表示1km,按此画出数轴即可;

(2)可直接算出来,也可从数轴上找出这段距离;

(3)将邮递员所走过后路程加起来可得邮递员所行的总路程,继而求出所耗油的量.

依题意得,数轴为:

依题意得:点与点的距离为:

依题意得邮递员骑了:

∴共耗油量为:升.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=x﹣2与反比例函数y= 的图像交于点A(3,1)和点B.
(1)求k的值及点B的坐标;
(2)若点P是坐标平面内一点,且以A,O,B,P为顶点构成一个平行四边形,请你直接写出该平行四边形对角线交点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线ACBD交于点OBE平分∠ABCAC于点F,交AD于点E,且∠DBF=15°,求证:(1AO=AE; (2)FEO的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).
(1)求点N落在BD上时t的值;
(2)直接写出点O在正方形PQMN内部时t的取值范围;
(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;
(4)直接写出直线DN平分△BCD面积时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.

根据阅读材料与你的理解回答下列问题:

(1)数轴上表示3与﹣2的两点之间的距离是   .

(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为  .

(3)代数式|x+8|可以表示数轴上有理数x与有理数   所对应的两点之间的距离;若|x+8|=5,则x=      .

(4)求代数式|x+1008|+|x+504|+|x﹣1007|的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:
①a=40,m=1;
②乙的速度是80km/h;
③甲比乙迟 h到达B地;
④乙车行驶 小时或 小时,两车恰好相距50km.
正确的个数是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形 的两边分别相交于两点,的面积为10.若动点轴上,则的最小值是_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校计划在总费用2300元的限额内租用客车送234名学生和6名教师集体外出活动每辆客车上至少要有1名教师.现有甲、乙两种大客车它们的载客量和租金如下表所示.

甲种客车

乙种客车

载客量/(/)

45

30

租金/(/)

400

280

(1)共需租多少辆客车?

(2)请给出最节省费用的租车方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)

关系:①ADBCAB=CD③∠A=C④∠B+C=180°.

已知:在四边形ABCD中,            

求证:四边形ABCD是平行四边形.

查看答案和解析>>

同步练习册答案