【题目】 如图,在中,
,
,
.点D从点C出发沿
方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿
方向以每秒2个单位长的速度向点B匀速运动,设点D、E运动的时间是t秒
.过点D作
于点F,连接
、
.
(1)求证:;
(2)四边形能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,为直角三角形?请说明理由.
【答案】(1)详见解析;(2)能,当时,四边形
为菱形;(3)当
或
时,
为直角三角形,理由详见解析
【解析】
(1)由,
,证出
;
(2)先证明四边形为平行四边形.得出
,
,若
为等边三角形,则
为菱形,得出
,
,求出
;
(3)分三种情况讨论:①时;②
时;③
时,第③种情况不存在;分别求出t的值即可.
解:(1)证明:在中,
,
,
又
;
(2)能;
理由如下:
,
.
又,
四边形
为平行四边形.
,
平行四边形
为菱形,则
,
即当时,四边形
为菱形;
(3)当或
时,
为直角三角形;
理由如下:
①时,四边形
为矩形.
在中,
,
.即
,
②时,由(2)知
,
.
即
③时,
,
点E运动到点B处,用了
秒,
同时点D也运动秒钟,点D就和点A重合,
点F也就和点B重合,
点不能构成三角形.
此种情况不存在;
综上所述,当或
时,△DEF为直角三角形.
科目:初中数学 来源: 题型:
【题目】在一个纸箱中,装有红色、黄色、白色的塑料球共200个这些小球除颜色外其他都完全相同,将球充分摇匀后,从中随机摸出一个球,记下它的颜色后再放回箱中,不断重复这一过程,小明发现其中摸到白色球、黄色球的频率分别稳定在15%和45%,则这个纸箱中红色球的个数可能有( )
A. 30个 B. 80个 C. 90个 D. 120个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是反比例y=(x>0)的图象上的一个动点,连接OA,OB⊥OA,且OB=2OA,那么经过点B的反比例函数图象的表达式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=ax2+bx+c(a≠0)的顶点坐标A(﹣1,3),与x轴的一个交点B(﹣4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0;②abc<0;③抛物线与x轴的另一个交点坐标是(3,0);④方程ax2+bx+c﹣3=0有两个相等的实数根;⑤当﹣4<x<﹣1时,则y2<y1.
其中正确的是( )
A. ①②③ B. ①③⑤ C. ①④⑤ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,,延长DA于点E,使得
,连接BE.
求证:四边形AEBC是矩形;
过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若
,
,求
的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,二次函数y=﹣+bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣
+bx+c的图象分别交于B,C两点,点B在第一象限.
(1)求二次函数y=﹣+bx+c的表达式;
(2)连接AB,求AB的长;
(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在轴的负半轴、轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=(x<0)的图象交AB于点N,的图象交AB于点N, S矩形OABC=32,tan∠DOE=
,,则BN的长为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中有3个大小相同的小球,球面上分别写有数字1,2,3,从袋中随机摸出一个小球,记录下数字后放回,再随机摸出一个小球.
(1)请用树状图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
(2)求两次摸出球上的数字的积为奇数的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com