精英家教网 > 初中数学 > 题目详情
(2010•大连)如图,直线1:与x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则点C的坐标为   
【答案】分析:过点C作CE⊥x轴于点E,先根据直角三角形的性质求出OA,OB的长度,根据直角三角形特殊角的三角函数值可求得有关角的度数.利用轴对称性和直角三角函数值可求得AE,CE的长度,从而求得点A的坐标.
解答:解:过点C作CE⊥x轴于点E
由直线AB的解析式可知
当x=0时,y=,即OB=
当y=0时,x=1,即OA=1
∵∠AOB=∠C=90°,tan∠3=OB:OA=
∴∠3=60°
∵△AOB与△ACB关于直线l对称
∴∠2=∠3=60°,AC=OA=1
∴∠1=180°-∠2-∠3=60°
在RT△ACE中
AE=cos60°×AC=1=
CE=sin60°×AC=
∴OE=1+=
∴点C的坐标是().
点评:本题主要考查了一次函数与直角三角形的综合运用和有关轴对称的性质.要熟练掌握根据函数解析式求得有关线段的长度的方法,灵活的运用数形结合的知识解题.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2010•大连)如图,抛物线F:y=ax2+bx+c(a>0)与y轴相交于点C,直线L1经过点C且平行于x轴,将L1向上平移t个单位得到直线L2,设L1与抛物线F的交点为C、D,L2与抛物线F的交点为A、B,连接AC、BC.
(1)当,c=1,t=2时,探究△ABC的形状,并说明理由;
(2)若△ABC为直角三角形,求t的值(用含a的式子表示);
(3)在(2)的条件下,若点A关于y轴的对称点A’恰好在抛物线F的对称轴上,连接A’C,BD,求四边形A’CDB的面积(用含a的式子表示)

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《一次函数》(03)(解析版) 题型:填空题

(2010•大连)如图,直线1:与x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则点C的坐标为   

查看答案和解析>>

科目:初中数学 来源:2010年辽宁省大连市中考数学试卷(解析版) 题型:解答题

(2010•大连)如图,抛物线F:y=ax2+bx+c(a>0)与y轴相交于点C,直线L1经过点C且平行于x轴,将L1向上平移t个单位得到直线L2,设L1与抛物线F的交点为C、D,L2与抛物线F的交点为A、B,连接AC、BC.
(1)当,c=1,t=2时,探究△ABC的形状,并说明理由;
(2)若△ABC为直角三角形,求t的值(用含a的式子表示);
(3)在(2)的条件下,若点A关于y轴的对称点A’恰好在抛物线F的对称轴上,连接A’C,BD,求四边形A’CDB的面积(用含a的式子表示)

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《圆》(06)(解析版) 题型:填空题

(2010•大连)如图,正方形ABCD的边长为2,E、F、G、H分别为各边中点,EG、FH相交于点O,以O为圆心,OE为半径画圆,则图中阴影部分的面积为   

查看答案和解析>>

同步练习册答案