分析 (1)根据根的判别式,可得答案;
(2)根据根与系数的关系,可得A、B间的距离,根据二次函数的性质,可得答案.
解答 解:(1)△=[-(m-3)]2-4(-m)=m2-2m+9=(m-1)2+8,
∵(m-1)2≥0,
∴△=(m-1)2+8>0,
∴原方程有两个不等实数根;
(2)存在,
由题意知x1,x2是原方程的两根,
∴x1+x2=m-3,x1•x2=-m.
∵AB=|x1-x2|,
∴AB2=(x1-x2)2=(x1+x2)2-4x1x2
=(m-3)2-4(-m)=(m-1)2+8,
∴当m=1时,AB2有最小值8,
∴AB有最小值,即AB=$\sqrt{8}$=2$\sqrt{2}$
点评 本题考查了抛物线与x轴的交点,利用了根的判别式,根据根与系数的关系,利用完全平方公式得出二次函数是解题关键,又利用了二次函数的性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com