精英家教网 > 初中数学 > 题目详情

【题目】如图,ABCD的对角线ACBD交于点OEF分别是AOCO的中点,连接BEDEDFBF

(1)求证:四边形EBFD是平行四边形.

(2)求证:当AC=2BD时,四边形EBFD是矩形.

【答案】(1)证明见解析;(2)证明见解析

【解析】分析:(1)由平行四边形的性质可求得OA=OC、OB=OD,再结合E、F为中点,可求得OE=OF,则可证得四边形EBFD为平行四边形;
(2)由条件可证得BD=EF,则可证得四边形EBFD为矩形.

详解:(1)证明:∵四边形ABCD为平行四边形,

OA=OCOB=OD

EF分别是AOCO的中点,

OE=OF

∴四边形EBFD为平行四边形;

(2)由(1)可知OE=OAOF=OC

OE+OF=AC,即EF=AC

AC=2EF

AC=2BE

EF=BD

∵四边形EBFD为平行四边形,

∴四边形EBFD是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,D、EAB上,且D、E分别是AC、BC的垂直平分线上一点;若△CDE的周长为4,AB的长为___________;若∠ACB=100°,∠DCE=_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某班学生外出乘车、步行、骑车的人数分布直方图和扇形分布图.

(1)求该班有多少名学生?

(2)补上骑车分布直方图的空缺部分;

(3)在扇形统计图中,求步行人数所占的圆心角度数;

(4)若全年级有900人,估计该年级骑车人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”.
(1)求函数y= x+2的图象上所有“中国结”的坐标;
(2)若函数y= (k≠0,k为常数)的图象上有且只有两个“中国结”,试求出常数k的值与相应“中国结”的坐标;
(3)若二次函数y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k为常数)的图象与x轴相交得到两个不同的“中国结”,试问该函数的图象与x轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD的边长为4,则正方形EFGH的边长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EF分别是边ABCD上的点,AE=CF,连接EFBFEF与对角线AC交于O点,且BE=BF∠BEF=2∠BAC

1)求证:OE=OF

2)若BC=,求AB的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.

根据图中提供的信息回答下列问题:

(1)小明家到学校的路程是多少米?

(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?

(3)小明在书店停留了多少分钟?

(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读求绝对值不等式|x|<3|x|>3的解集的过程:

因为|x|<3,从如图1所示的数轴上看:大于-3而小于3的数的绝对值是小于3的,所以|x|<3的解集是-3<x<3;

因为|x|>3,从如图2所示的数轴上看:小大于-3的数和大于3的数的绝对值是大于3的,所以|x|>3的解集是x<-3x>3.

解答下面的问题:

(1)不等式|x|<a(a>0)的解集为______;不等式|x|>a(a>0)的解集为______.

(2)解不等式|x-5|<3;

(3)解不等式|x-3|>5.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα= ,tan ,以O为原点,OA所在直线为x轴建立直角坐标系.
(1)求点P的坐标;
(2)水面上升1m,水面宽多少( 取1.41,结果精确到0.1m)?

查看答案和解析>>

同步练习册答案