精英家教网 > 初中数学 > 题目详情
7.如图,在CD上找一点P,使得它到OA、OB的距离相等,则应找到(  )
A.线段CD的中点B.CD与∠AOB平分线的交点
C.OC垂直平分线与CD的交点D.OD垂直平分线与CD的交点

分析 根据角平分线的性质解答即可.

解答 解:∵点P到OA、OB的距离相等,
∴点P在∠AOB平分线上,
∴点P是CD与∠AOB平分线的交点,
故选:B.

点评 本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为(  )
A.3B.4C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,OC是∠AOB的平分线,且∠1=∠2,探索EF与OB的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.
(1)求证:BD=EC.
(2)当∠DAB=60°时,四边形BECD为菱形吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列说法正确的是(  )
①内错角相等;②过直线外一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④幂的乘方,底数不变,指数相加;⑤两个角的和为90°,则这两个角互补.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图所示的是一把剪刀,若∠1与∠2互为余角,则∠3等于(  )
A.90°B.120°C.135°D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.【知识链接】
(1)有理化因式:两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:$\sqrt{2}$的有理化因式是$\sqrt{2}$;1-$\sqrt{{x}^{2}+2}$的有理化因式是1+$\sqrt{{x}^{2}+2}$.
(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去,指的是如果二次根式中分母有根号,那么通常在分子、分母上同乘以一个二次根式,达到化去分母中根号的目的.
【知识运用】
 (1)填空:2$\sqrt{x}$的有理化因式是$\sqrt{x}$;a+$\sqrt{b}$的有理化因式是a-$\sqrt{b}$;-$\sqrt{m-1}$-$\sqrt{m+1}$的有理化因式是$-\sqrt{m-1}+\sqrt{m+1}$.
(2)把下列各式的分母有理化:
①$\frac{1}{x+\sqrt{y}}$;②$\frac{\sqrt{6}+\sqrt{2}}{\sqrt{2}-\sqrt{6}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在正方形ABCD中,点E是边BC上的中点,在边CD上取一点F,使得AE平分∠BAF.
(1)依题意补充图形;
(2)小玲画图结束后,通过观察、测量,提出猜想:线段AF等于线段BC与线段CF的和.小玲把这个猜想与同学们进行交流.通过讨论,形成了证明该猜想的几种想法:
想法1:考虑到AE平分∠BAF,且∠B=90°.若过点E作EM⊥AF,则易证AM=AB=BC.这样,只需证明FM=FC即可.因∠EMF=∠C=90°,证FM=FC即证EF平分∠MEC,所以连接EF.
想法2:考虑到E是BC中点,若延长AE,交DC的延长线于点G,则易证CG=AB,则CF+BC=CF+CG=FG.要证AF=BC+CF,只需证FA=FG即可.
想法3:小米在课外小组学习了梯形中位线的相关知识,考虑到正方形ABCD所以有BC=AB,因此BC+CF=AB+CF,是梯形上、下底之和,结合“E是BC中点”,易联想到梯形中位线的性质,从而解决问题.

请你参考上面的想法,帮助小玲证明AF=BC+CF.(一种方法即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图长方形OABC的位置如图所示,点B的坐标为(8,4),点P从点C出发向点O移动,速度为每秒1个单位;点Q同时从点O出发向点A移动,速度为每秒2个单位,设运动时间为t(0≤t≤4)
(1)填空:点A的坐标为(8,0),点C的坐标为(0,4)),点P的坐标为(0,4-t).(用含t的代数式表示)
(2)当t为何值时,P、Q两点与原点距离相等?
(3)在点P、Q移动过程中,四边形OPBQ的面积是否变化?说明理由.

查看答案和解析>>

同步练习册答案