精英家教网 > 初中数学 > 题目详情
1.一元二次方程x2+px+19=0的两根恰好比方程x2-Ax+B=0的两个根分别大1,其中A,B,p都为整数,则A+B=18.

分析 设x2-Ax+B=0两根为α,β,根据根与系数的关系和已知条件得到-p=α+1+β+1,A=α+β,α•β=B,所以将其代入:(α+1)(β+1)=αβ+(α+β)+1=19,得到B+A+1=19.

解答 解:设x2-Ax+B=0两根为α,β,则
-p=α+1+β+1,A=α+β,α•β=B,
所以-p=A+2,
所以(α+1)(β+1)=αβ+(α+β)+1=19,
所以 B+A+1=19,
所以 B+A=18.
故答案是:18.

点评 主要考查一元二次方程根与系数关系的应用.利用根与系数的关系得到两根之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.如图,?ABCD中,AE⊥BC于E,AF⊥CD于F,∠BAD=135°,则∠EAF=45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)(2x2y-3xy2)-(6x2y-3xy2
(2)(-$\frac{3}{2}$ax4y3)÷(-$\frac{6}{5}$ax2y2)•8a2y.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,△ABC中,两条角平分线BD,CE交于点M,MN⊥BC于点N,将∠MBN记为∠1,∠MCN记为∠2.∠CMN记为∠3.
(1)若∠A=98°,∠BEC=124°,则∠2=26°,∠3-∠1=49°;
(2)猜想∠3-∠1与∠A的数量关系,并证明你的结论;
(3)若∠BEC=α,∠BDC=β,如图2所示,用含α和β的代数式表示∠3-∠1的度数.(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,正六边形ABCDEF能由△ABO平移得到的图形有哪几个?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知直线y=-2x+2交坐标轴于A,B两点,以线段AB为边向上作矩形ABCD,AB:AD=1:2,过点A,D,C的抛物线与直线另一个交点为E.
(1)求抛物线的解析式;
(2)若矩形以每秒$\sqrt{5}$个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设矩形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(3)在(2)的条件下,抛物线与矩形一起平移,同时D落在x轴上时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,抛物线y=ax2+bx+3经过点A(-3,0),B(-1,0)两点,
(1)求抛物线的解析式;
(2)设抛物线的顶点为M,直线y=-4x+9与y轴交于点C,与直线OM交于点D,现将抛物线平移,保持顶点在直线OD上,若平移的抛物线与射线CD只有一个公共点,求它的顶点横坐标的值或取值范围;
(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于点E、F,交△CMD的边CM、CD于点G、H(G点不与M点重合、H点不与D点重合).
①问在y轴的负半轴上是否存在一点P,使△PEF的内心在y轴上?若存在,求出点P的坐标;若不存在,说明理由.
②S四边形MDHG,S△CGH分别表示四边形MDHG和△CGH的面积,试探究$\frac{{{S_{四边形MDHG}}}}{{{S_{△CGH}}}}$的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,正方形OABC的点A在y轴上,点C在x轴上,点B(4,4),点E在BC边上,将△ABE绕点A顺时针旋转90°,得△AOF,连接EF交y轴于点D.
(Ⅰ)若点E的坐标为(4,3),求①线段EF的长;②点D的坐标;
(Ⅱ)设点E(4,m),S=S△ABE+S△FCE,试用含m的式子表示S,并求出使S取得最大值时点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.已知方程x2+mx+n=0的两根为x1、x2(x1<x2),方程x2+mx+n-1=0的两根为x3、x4(x3<x4),则下列关系一定成立的是(  )
A.x1<x2<x3<x4B.x1<x3<x4<x2C.x3<x4<x1<x2D.x3<x1<x2<x4

查看答案和解析>>

同步练习册答案