精英家教网 > 初中数学 > 题目详情
14、已知Rt△ABC的两条直角边的长a、b均为整数,且a为质数,若斜边c也是整数,求证:2(a+b+1)是完全平方数.
分析:由勾股定理易得a2+b2=c2,则a2=c2-b2=(c+b)(c-b),因为a为质数,所以c+b=a2,c-b=1,两式相减可得a2=2b+1,代入2(a+b+1)即可得证.
解答:解:∵a,b是Rt△ABC的两条直角边,c是斜边,
∴a2+b2=c2
即a2=c2-b2=(c+b)(c-b),
∵a为质数,
∴c+b=a2,c-b=1,
∴a2=2b+1,
∴2(a+b+1)=a2+2a+1=(a+1)2
∴2(a+b+1)是完全平方数.
点评:此题考查完全平方数,根据勾股定理和a为质数展开答题,是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知Rt△ABC的两条直角边AC=3cm,BC=4cm,则以直线AC为轴旋转一周所得到的图形是
 
,其侧面积是S=
 
cm2
A、圆锥体B、圆柱体C、长方体D、正方体

查看答案和解析>>

科目:初中数学 来源: 题型:

已知Rt△ABC的两直角边AC、BC分别是一元二次方程x2-5x+6=0的两根,则此Rt△ABC的外接圆的半径为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•贵阳)已知Rt△ABC的两条直角边的长分别为5cm和12cm,则它斜边上的高长为
60
13
60
13
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知Rt△ABC的两直角边边长分别为5、12,若将其内切圆挖去,则剩下部分的面积等于
30-4π
30-4π

查看答案和解析>>

科目:初中数学 来源: 题型:

已知Rt△ABC的两直角边AC=5,BC=12,D是BC上一点.当AD是∠A的平分线时,则CD=
10
3
10
3

查看答案和解析>>

同步练习册答案