精英家教网 > 初中数学 > 题目详情
(2005•西宁)如图,已知⊙O与CA、CB相切于点A、B,OA=OB=2cm,AB=6 cm,求∠ACB的度数.

【答案】分析:过O作OD⊥AB于D;根据等腰三角形三线合一的性质知:OD垂直平分AB,且OD平分∠AOB;
在Rt△OBD中,已知了OB、BD的长,可求出∠BOD的正弦值,进而可求出∠BOD、∠AOB的度数.
在四边形AOBC中,∠AOB和∠ACB互补,由此可求出∠ACB的度数.
解答:解:过O作OD⊥AB于D;
△OAB中,OA=OB,OD⊥AB;
∴AD=BD,∠AOD=∠BOD=∠AOB(等腰三角形三线合一);
Rt△BOD中,OB=2,BD=3;
∴sin∠BOD==,即∠BOD=60°;
∴∠AOB=120°;
∵CB、CA都是⊙O的切线,
∴∠OAC=∠OBC=90°;
∴∠AOB+∠ACB=180°,
∴∠ACB=180°-∠AOB=60°.
点评:此题考查了垂径定理、解直角三角形、多边形的内角和、切线的性质等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2005•西宁)如图,在等腰梯形ABCD中,AD∥BC,BA=CD,AD的长为4,S梯形ABCD=9.已知点A、B的坐标分别为(1,0)和(0,3).
(1)求点C的坐标;
(2)取点E(0,1),连接DE并延长交AB于P试猜想DF与AB之间的关系,并证明你的结论;
(3)将梯形ABCD绕点A旋转180°后成梯形AB′C′D′,求对称轴为直线x=3,且过A、B′两点的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2005年青海省西宁市中考数学试卷(解析版) 题型:解答题

(2005•西宁)如图,在等腰梯形ABCD中,AD∥BC,BA=CD,AD的长为4,S梯形ABCD=9.已知点A、B的坐标分别为(1,0)和(0,3).
(1)求点C的坐标;
(2)取点E(0,1),连接DE并延长交AB于P试猜想DF与AB之间的关系,并证明你的结论;
(3)将梯形ABCD绕点A旋转180°后成梯形AB′C′D′,求对称轴为直线x=3,且过A、B′两点的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《图形的对称》(04)(解析版) 题型:解答题

(2005•西宁)如图,在格点图中,l1、l2是两条互相垂直的直线.
(1)画出图形A关于l1对称的图形B,再画出图形B关于l2对称的图形C;
(2)比较图形A与图形C,用语言把它们之间的关系表达出来.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《圆》(16)(解析版) 题型:解答题

(2005•西宁)如图,已知⊙O与CA、CB相切于点A、B,OA=OB=2cm,AB=6 cm,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源:2005年青海省西宁市中考数学试卷(解析版) 题型:解答题

(2005•西宁)如图,在人民公园人工湖两侧的A、B两点欲建一座观赏桥,由于受条件限制,无法直接度量A、B间的距离.请你用学过的知识,在图中,设计三种测量方案.

要求:
(1)画出你设计的测量平面草图;
(2)在图形中标出测量的数据(长度用a、b、c…,角度用α、β、γ…表示),并写出测量的依据及AB的表达式;
(3)设计一种得2分,设计两种得5分,设计三种得9分.

查看答案和解析>>

同步练习册答案