精英家教网 > 初中数学 > 题目详情

【题目】若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为(  )
A.(﹣2,﹣1)
B.(﹣1,0)
C.(﹣1,﹣1)
D.(﹣2,0)

【答案】C
【解析】解:∵点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,
∴点B的横坐标为1﹣2=﹣1,纵坐标为3﹣4=﹣1,
∴B的坐标为(﹣1,﹣1).
故选C.
【考点精析】认真审题,首先需要了解坐标与图形变化-平移(新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点;连接各组对应点的线段平行且相等).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用代数式表示:x2倍与y的差的平方______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把命题角平分线上的点到这个角两边的距离相等改写成如果,那么…、”的形式:如果_____,那么_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线图象经过A(﹣1,0),B(4,0)两点.

1)求抛物线的解析式;

2)若Cmm﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与端点AB重合),过点D分别作DEBCACEDFACBCF

①求证:四边形DECF是矩形;

②试探究:在点D运动过程中,DEDFCF的长度之和是否发生变化?若不变,求出它的值;若变化,试说明变化情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个角的补角比它的余角的3倍多30°,求这个角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;
③△ACN≌△ABM;④CD=DN.其中正确的是(将正确的结论的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究:(1)如图①,AB为⊙O的弦,点C是⊙O上的一点,在直线AB上方找一个点D,使得∠ADB=∠ACB,画出∠ADB;

(2)如图②,AB 是⊙O的弦,点C是⊙O上的一个点,在过点C的直线l上找一点P,使得∠APB<∠ACB,画出∠APB;

(3)如图③,已知足球门宽AB约为米,一球员从距B点米的C点(点A、B、C均在球场的底线上),沿与AC成45°的CD方向带球.试问,该球员能否在射线CD上找一点P,使得点P最佳射门点(即∠APB最大)?若能找到,求出这时点P与点C的距离;若找不到,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】O为直线AB上一点,在直线AB上侧任作一个∠COD,使得∠COD=90°

1)如图1,过点O作射线OE,当OE恰好为∠AOD的角平分线时,请直接写出∠BOD与∠COE之间的倍数关系,即∠BOD= ______ COE(填一个数字);

2)如图2,过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,求∠FOB+EOC的度数;

3)在(2)的条件下,若∠EOC=3EOF,求∠AOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在BCD 的平分线上时,CA1的长为( )

A、3或4 B、4或3 C、3或4 D、3或4

查看答案和解析>>

同步练习册答案