精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB是O的直径,点C在O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.

(1)求证:PC是O的切线;
(2)求证:BC= AB;
(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.

【答案】
(1)

证明:∵OA=OC,

∴∠A=∠ACO.

又∵∠COB=2∠A,∠COB=2∠PCB,

∴∠A=∠ACO=∠PCB.

又∵AB是⊙O的直径,

∴∠ACO+∠OCB=90°.

∴∠PCB+∠OCB=90°.

即OC⊥CP,

∵OC是⊙O的半径.

∴PC是⊙O的切线.


(2)

证明:∵AC=PC,

∴∠A=∠P,

∴∠A=∠ACO=∠PCB=∠P.

又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,

∴∠COB=∠CBO,

∴BC=OC.

∴BC= AB.


(3)

解:连接MA,MB,

∵点M是 的中点,

=

∴∠ACM=∠BCM.

∵∠ACM=∠ABM,

∴∠BCM=∠ABM.

∵∠BMN=∠BMC,

∴△MBN∽△MCB.

∴BM2=MNMC.

又∵AB是⊙O的直径, =

∴∠AMB=90°,AM=BM.

∵AB=4,

∴BM=2

∴MNMC=BM2=8.


【解析】(1)由半径OA=OC,可得等边对等角∠A=∠ACO,则∠COB=2∠A,已知∠COB=2∠PCB,∠A=∠ACO=∠PCB.由直径所对的圆周角是直角可得∠ACO+∠OCB=90°.从而转换得到∠PCB+∠OCB=90°即可证得;(2)“等角对等边”与“等边对等角”相互运用可证OC=BC;(3)连接MA,MB,先证明△MBN∽△MCB.则 ,即BM2=MNMC.由AB是⊙O的直径, = ,AB=4,解出BM,从而可解得MNMC.
【考点精析】解答此题的关键在于理解圆周角定理的相关知识,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】图a.图b均为边长等于1的正方形组成的网格.
(1)在图a空白的方格中,画出阴影部分的图形沿虚线AB翻折后的图形,并算出原来阴影部分的面积.(直接写出答案)
(2)在图b空白的方格中,画出阴影部分的图形向右平移2个单位,再向上平移1个单位后的图形,并判断原来阴影部分的图形是什么三角形?(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】丁丁家买了一套安置房,地面结构如图所示.

(1)写出用含xy的式子表示地面的总面积;

(2)如果x=4 m,y=1.5 m,铺1 m2地砖的平均费用为80元,求铺地砖的总费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点△ABC(顶点是网格线的交点的三角形)的顶点A(45)C(13)

(1)请在如图所示的网格平面内作出平面直角坐标系,并计算△ABC的面积;

(2)作出ABC关于y轴对称的△ABC

(3)Px轴上,且△POB的面积等于△ABC面积的一半,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB4BC5,点E在边CD上,以B为坐标原点,BA所在直线为y轴,BC所在直线为x轴,建立平面直角坐标系A(04).以AE所在直线为折痕折叠长方形ABCD,点D恰好落在BC边上的F点.

(1)求点F的坐标;

(2)求点E的坐标;

(3)AE上是否存在点P,使PBPF最小?若存在,作出点P的位置,并求出PBPF的最小值;不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y= (k≠0)在第一象限的图象经过顶点A(m,m+3)和CD上的点E,且OB﹣CE=1.直线l过O、E两点,则tan∠EOC的值为(
A.
B.5
C.
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示.

现有以下4个结论:

①快递车从甲地到乙地的速度为100千米/小时;

②甲、乙两地之间的距离为120千米;

③图中点B的坐标为(3.75,75)

④快递车从乙地返回时的速度为90千米/小时

以上结论正确的是________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司投资1200万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y(万件)与产品售价x(元)之间的关系如图所示.
(1)求y与x之间的函数关系式,并写出x的取值范围;
(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达790万元?若能,求出第二年产品售价;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某区在实施居民用水管理前,随机调查了部分家庭(单位:户)去年的月均用水量(单位:t),并将调查数据进行整理,绘制出如下不完整的统计图表:

请解答以下问题:

(1)把上面的频数分布表和频数分布直方图补充完整;

(2)若该小区有2000户家庭,根据此次随机抽查的数据估计,该小区月均用水量不低于20t的家庭有多少户?

(3)为了鼓励节约用水,要确定一个月均用水量的标准,超出该标准的部分按1.5倍价格收费,若要使68%的家庭水费支出不受影响,那么,你觉得家庭月均用水量应定为多少?

查看答案和解析>>

同步练习册答案