精英家教网 > 初中数学 > 题目详情
已知△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于E,交直线AC于点F.
(1)当点P在线段AB上时,(如图1)求证:PA•PB=PE•PF.
(2)在图2中画出当点P在线段AB的延长线上时,(1)中的结论是否仍然成立?如果成立,请证明,如果不成立,请说明理由.
精英家教网
分析:(1)欲证 PA•PB=PE•PF,即证
PA
PE
=
PF
PB
.证明线段所在的△PAF与△PEB相似即可.根据弦切角定理有∠PBE=∠C;根据平行线的性质得∠C=∠PFA.所以∠PBE=∠PFA.运用“有两角对应相等的两个三角形相似”得证;
 (2)根据题意作图,仿(1)证明.
解答:(1)证明:∵BT为切线,BA为弦.
∴∠ABE=∠C,∠APF=∠EPB.
又∵EF∥BC,
∴∠C=∠AFP,∴∠ABE=∠AFP.
∴△APF∽△EPB,
PA
PE
=
PF
PB

即PA•PB=PE•PF.

(2)
精英家教网
结论仍然成立.
证明:∵BT为切线,BC为弦,
∴∠CBE=∠A.
∵PF∥BC,
∴∠CBE=∠PEB.
∴∠PEB=∠A.
又∠EPB=∠APF,
∴△APF∽△EPB,
PA
PE
=
PF
PB

即PA•PB=PE•PF.
点评:此题考查弦切角定理和相似三角形的判定与性质,难度中等.证明等积式常变形为比例式,转证线段所在的三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知△ABC是⊙O的内接三角形,且AB=AC=4
5
,BC=8,则⊙O的直径等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图,已知△ABC是⊙O的内接三角形,AD是⊙O的切线,点A为切点,∠ACB=60°,则∠DAB的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•五通桥区模拟)如图,已知△ABC是⊙O的内接三角形,AB=AC,AD=AE,AE的延长线与BC的延长线交于点F.
求证:(1)∠DAB=∠CAE;
(2)
AD
AC
=
AB
AF

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉)如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是
AB
的中点,连接PA,PB,PC.
(1)如图①,若∠BPC=60°.求证:AC=
3
AP;
(2)如图②,若sin∠BPC=
24
25
,求tan∠PAB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,面积等于b,
a
b
的值为(  )

查看答案和解析>>

同步练习册答案